24,767 research outputs found

    Measuring information-transfer delays

    Get PDF
    In complex networks such as gene networks, traffic systems or brain circuits it is important to understand how long it takes for the different parts of the network to effectively influence one another. In the brain, for example, axonal delays between brain areas can amount to several tens of milliseconds, adding an intrinsic component to any timing-based processing of information. Inferring neural interaction delays is thus needed to interpret the information transfer revealed by any analysis of directed interactions across brain structures. However, a robust estimation of interaction delays from neural activity faces several challenges if modeling assumptions on interaction mechanisms are wrong or cannot be made. Here, we propose a robust estimator for neuronal interaction delays rooted in an information-theoretic framework, which allows a model-free exploration of interactions. In particular, we extend transfer entropy to account for delayed source-target interactions, while crucially retaining the conditioning on the embedded target state at the immediately previous time step. We prove that this particular extension is indeed guaranteed to identify interaction delays between two coupled systems and is the only relevant option in keeping with Wiener’s principle of causality. We demonstrate the performance of our approach in detecting interaction delays on finite data by numerical simulations of stochastic and deterministic processes, as well as on local field potential recordings. We also show the ability of the extended transfer entropy to detect the presence of multiple delays, as well as feedback loops. While evaluated on neuroscience data, we expect the estimator to be useful in other fields dealing with network dynamics

    Nonconcave penalized composite conditional likelihood estimation of sparse Ising models

    Full text link
    The Ising model is a useful tool for studying complex interactions within a system. The estimation of such a model, however, is rather challenging, especially in the presence of high-dimensional parameters. In this work, we propose efficient procedures for learning a sparse Ising model based on a penalized composite conditional likelihood with nonconcave penalties. Nonconcave penalized likelihood estimation has received a lot of attention in recent years. However, such an approach is computationally prohibitive under high-dimensional Ising models. To overcome such difficulties, we extend the methodology and theory of nonconcave penalized likelihood to penalized composite conditional likelihood estimation. The proposed method can be efficiently implemented by taking advantage of coordinate-ascent and minorization--maximization principles. Asymptotic oracle properties of the proposed method are established with NP-dimensionality. Optimality of the computed local solution is discussed. We demonstrate its finite sample performance via simulation studies and further illustrate our proposal by studying the Human Immunodeficiency Virus type 1 protease structure based on data from the Stanford HIV drug resistance database. Our statistical learning results match the known biological findings very well, although no prior biological information is used in the data analysis procedure.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1017 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie

    Ninja data analysis with a detection pipeline based on the Hilbert-Huang Transform

    Full text link
    The Ninja data analysis challenge allowed the study of the sensitivity of data analysis pipelines to binary black hole numerical relativity waveforms in simulated Gaussian noise at the design level of the LIGO observatory and the VIRGO observatory. We analyzed NINJA data with a pipeline based on the Hilbert Huang Transform, utilizing a detection stage and a characterization stage: detection is performed by triggering on excess instantaneous power, characterization is performed by displaying the kernel density enhanced (KD) time-frequency trace of the signal. Using the simulated data based on the two LIGO detectors, we were able to detect 77 signals out of 126 above SNR 5 in coincidence, with 43 missed events characterized by signal to noise ratio SNR less than 10. Characterization of the detected signals revealed the merger part of the waveform in high time and frequency resolution, free from time-frequency uncertainty. We estimated the timelag of the signals between the detectors based on the optimal overlap of the individual KD time-frequency maps, yielding estimates accurate within a fraction of a millisecond for half of the events. A coherent addition of the data sets according to the estimated timelag eventually was used in a characterization of the event.Comment: Accepted for publication in CQG, special issue NRDA proceedings 200
    • …
    corecore