37 research outputs found

    Real-time operating system support for multicore applications

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2014Plataformas multiprocessadas atuais possuem diversos níveis da memória cache entre o processador e a memória principal para esconder a latência da hierarquia de memória. O principal objetivo da hierarquia de memória é melhorar o tempo médio de execução, ao custo da previsibilidade. O uso não controlado da hierarquia da cache pelas tarefas de tempo real impacta a estimativa dos seus piores tempos de execução, especialmente quando as tarefas de tempo real acessam os níveis da cache compartilhados. Tal acesso causa uma disputa pelas linhas da cache compartilhadas e aumenta o tempo de execução das aplicações. Além disso, essa disputa na cache compartilhada pode causar a perda de prazos, o que é intolerável em sistemas de tempo real críticos. O particionamento da memória cache compartilhada é uma técnica bastante utilizada em sistemas de tempo real multiprocessados para isolar as tarefas e melhorar a previsibilidade do sistema. Atualmente, os estudos que avaliam o particionamento da memória cache em multiprocessadores carecem de dois pontos fundamentais. Primeiro, o mecanismo de particionamento da cache é tipicamente implementado em um ambiente simulado ou em um sistema operacional de propósito geral. Consequentemente, o impacto das atividades realizados pelo núcleo do sistema operacional, tais como o tratamento de interrupções e troca de contexto, no particionamento das tarefas tende a ser negligenciado. Segundo, a avaliação é restrita a um escalonador global ou particionado, e assim não comparando o desempenho do particionamento da cache em diferentes estratégias de escalonamento. Ademais, trabalhos recentes confirmaram que aspectos da implementação do SO, tal como a estrutura de dados usada no escalonamento e os mecanismos de tratamento de interrupções, impactam a escalonabilidade das tarefas de tempo real tanto quanto os aspectos teóricos. Entretanto, tais estudos também usaram sistemas operacionais de propósito geral com extensões de tempo real, que afetamos sobre custos de tempo de execução observados e a escalonabilidade das tarefas de tempo real. Adicionalmente, os algoritmos de escalonamento tempo real para multiprocessadores atuais não consideram cenários onde tarefas de tempo real acessam as mesmas linhas da cache, o que dificulta a estimativa do pior tempo de execução. Esta pesquisa aborda os problemas supracitados com as estratégias de particionamento da cache e com os algoritmos de escalonamento tempo real multiprocessados da seguinte forma. Primeiro, uma infraestrutura de tempo real para multiprocessadores é projetada e implementada em um sistema operacional embarcado. A infraestrutura consiste em diversos algoritmos de escalonamento tempo real, tais como o EDF global e particionado, e um mecanismo de particionamento da cache usando a técnica de coloração de páginas. Segundo, é apresentada uma comparação em termos da taxa de escalonabilidade considerando o sobre custo de tempo de execução da infraestrutura criada e de um sistema operacional de propósito geral com extensões de tempo real. Em alguns casos, o EDF global considerando o sobre custo do sistema operacional embarcado possui uma melhor taxa de escalonabilidade do que o EDF particionado com o sobre custo do sistema operacional de propósito geral, mostrando claramente como diferentes sistemas operacionais influenciam os escalonadores de tempo real críticos em multiprocessadores. Terceiro, é realizada uma avaliação do impacto do particionamento da memória cache em diversos escalonadores de tempo real multiprocessados. Os resultados desta avaliação indicam que um sistema operacional "leve" não compromete as garantias de tempo real e que o particionamento da cache tem diferentes comportamentos dependendo do escalonador e do tamanho do conjunto de trabalho das tarefas. Quarto, é proposto um algoritmo de particionamento de tarefas que atribui as tarefas que compartilham partições ao mesmo processador. Os resultados mostram que essa técnica de particionamento de tarefas reduz a disputa pelas linhas da cache compartilhadas e provê garantias de tempo real para sistemas críticos. Finalmente, é proposto um escalonador de tempo real de duas fases para multiprocessadores. O escalonador usa informações coletadas durante o tempo de execução das tarefas através dos contadores de desempenho em hardware. Com base nos valores dos contadores, o escalonador detecta quando tarefas de melhor esforço o interferem com tarefas de tempo real na cache. Assim é possível impedir que tarefas de melhor esforço acessem as mesmas linhas da cache que tarefas de tempo real. O resultado desta estratégia de escalonamento é o atendimento dos prazos críticos e não críticos das tarefas de tempo real.Abstracts: Modern multicore platforms feature multiple levels of cache memory placed between the processor and main memory to hide the latency of ordinary memory systems. The primary goal of this cache hierarchy is to improve average execution time (at the cost of predictability). The uncontrolled use of the cache hierarchy by realtime tasks may impact the estimation of their worst-case execution times (WCET), specially when real-time tasks access a shared cache level, causing a contention for shared cache lines and increasing the application execution time. This contention in the shared cache may leadto deadline losses, which is intolerable particularly for hard real-time (HRT) systems. Shared cache partitioning is a well-known technique used in multicore real-time systems to isolate task workloads and to improve system predictability. Presently, the state-of-the-art studies that evaluate shared cache partitioning on multicore processors lack two key issues. First, the cache partitioning mechanism is typically implemented either in a simulated environment or in a general-purpose OS (GPOS), and so the impact of kernel activities, such as interrupt handlers and context switching, on the task partitions tend to be overlooked. Second, the evaluation is typically restricted to either a global or partitioned scheduler, thereby by falling to compare the performance of cache partitioning when tasks are scheduled by different schedulers. Furthermore, recent works have confirmed that OS implementation aspects, such as the choice of scheduling data structures and interrupt handling mechanisms, impact real-time schedulability as much as scheduling theoretic aspects. However, these studies also used real-time patches applied into GPOSes, which affects the run-time overhead observed in these works and consequently the schedulability of real-time tasks. Additionally, current multicore scheduling algorithms do not consider scenarios where real-time tasks access the same cache lines due to true or false sharing, which also impacts the WCET. This thesis addresses these aforementioned problems with cache partitioning techniques and multicore real-time scheduling algorithms as following. First, a real-time multicore support is designed and implemented on top of an embedded operating system designed from scratch. This support consists of several multicore real-time scheduling algorithms, such as global and partitioned EDF, and a cache partitioning mechanism based on page coloring. Second, it is presented a comparison in terms of schedulability ratio considering the run-time overhead of the implemented RTOS and a GPOS patched with real-time extensions. In some cases, Global-EDF considering the overhead of the RTOS is superior to Partitioned-EDF considering the overhead of the patched GPOS, which clearly shows how different OSs impact hard realtime schedulers. Third, an evaluation of the cache partitioning impacton partitioned, clustered, and global real-time schedulers is performed.The results indicate that a lightweight RTOS does not impact real-time tasks, and shared cache partitioning has different behavior depending on the scheduler and the task's working set size. Fourth, a task partitioning algorithm that assigns tasks to cores respecting their usage of cache partitions is proposed. The results show that by simply assigning tasks that shared cache partitions to the same processor, it is possible to reduce the contention for shared cache lines and to provideHRT guarantees. Finally, a two-phase multicore scheduler that provides HRT and soft real-time (SRT) guarantees is proposed. It is shown that by using information from hardware performance counters at run-time, the RTOS can detect when best-effort tasks interfere with real-time tasks in the shared cache. Then, the RTOS can prevent best effort tasks from interfering with real-time tasks. The results also show that the assignment of exclusive partitions to HRT tasks together with the two-phase multicore scheduler provides HRT and SRT guarantees, even when best-effort tasks share partitions with real-time tasks

    Scratchpad Management in Software Managed Manycore Architectures

    Get PDF
    abstract: Caches have long been used to reduce memory access latency. However, the increased complexity of cache coherence brings significant challenges in processor design as the number of cores increases. While making caches scalable is still an important research problem, some researchers are exploring the possibility of a more power-efficient SRAM called scratchpad memories or SPMs. SPMs consume significantly less area, and are more energy-efficient per access than caches, and therefore make the design of on-chip memories much simpler. Unlike caches, which fetch data from memories automatically, an SPM requires explicit instructions for data transfers. SPM-only architectures are thus named as software managed manycore (SMM), since the data movements of such architectures rely on software. SMM processors have been widely used in different areas, such as embedded computing, network processing, or even high performance computing. While SMM processors provide a low-power platform, the hardware alone does not guarantee power efficiency, if applications on such processors deliver low performance. Efficient software techniques are therefore required. A big body of management techniques for SMM architectures are compiler-directed, as inserting data movement operations by hand forces programmers to trace flow of data, which can be error-prone and sometimes difficult if not impossible. This thesis develops compiler-directed techniques to manage data transfers for embedded applications on SMMs efficiently. The techniques analyze and find out the proper program points and insert data movement instructions accordingly. The techniques manage code, stack and heap data of applications, and reduce execution time by 14%, 52% and 80% respectively compared to their predecessors on typical embedded applications. On top of managing local data, a technique is also developed for shared data in SMM architectures. Experimental results show it achieves more than 2X speedup than the previous technique on average.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Rapid designs for cache coherence protocol engines in Bluespec

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 91-92).In this thesis, we present the framework for Rapid Protocol Engine Development (RaPED). We implemented the framework in Bluespec, which is a high level hardware language based on Term Rewriting Systems (TRSs). The framework is highly parameterized and general, thus allowing designers to design any protocol engine in a short period. Since protocol engines can be developed rapidly, designers can compare different designs instead of freezing the design prematurely in the development process. We used the RaPED to implement a cache coherence protocol for Shen and Arvind's Commit-Reconcile and Fences (CRF) memory model [1]. The CRF allows scalable implementations of shared memory systems by decomposing memory access operations into simpler instructions. However, the focus for Shen's Cachet protocol for the CRF was adaptivity and correctness, it ignored some important implementation issues such as cache-line replacement, efficient buffer management and compatibility with multiword cache lines. In this thesis, we present a protocol called the Multiword Base protocol, which avoids these limitations. We defined the Multi-word CRF (MCRF) memory model to help us to prove the correctness of Multiword Base. The MCRF is a specialization of the CRF with modifications that summarizes the properties of multiword cache lines. We show that Multiword Base is a correct implementation of the CRF by using the MCRF to simulate Multiword Base. Apart from using multiword cache lines, many cache coherence protocols allow a cache to get data directly from another cache. The caches having this property is calling the snoopy caches. In this thesis, we present a CRF variant called the Snoopy CRF (SCRF) memory model, which gives hints to incorporate snoopy caches to the implementations of the CRF.by Man Cheuk Ng.S.M

    Cross-core Microarchitectural Attacks and Countermeasures

    Get PDF
    In the last decade, multi-threaded systems and resource sharing have brought a number of technologies that facilitate our daily tasks in a way we never imagined. Among others, cloud computing has emerged to offer us powerful computational resources without having to physically acquire and install them, while smartphones have almost acquired the same importance desktop computers had a decade ago. This has only been possible thanks to the ever evolving performance optimization improvements made to modern microarchitectures that efficiently manage concurrent usage of hardware resources. One of the aforementioned optimizations is the usage of shared Last Level Caches (LLCs) to balance different CPU core loads and to maintain coherency between shared memory blocks utilized by different cores. The latter for instance has enabled concurrent execution of several processes in low RAM devices such as smartphones. Although efficient hardware resource sharing has become the de-facto model for several modern technologies, it also poses a major concern with respect to security. Some of the concurrently executed co-resident processes might in fact be malicious and try to take advantage of hardware proximity. New technologies usually claim to be secure by implementing sandboxing techniques and executing processes in isolated software environments, called Virtual Machines (VMs). However, the design of these isolated environments aims at preventing pure software- based attacks and usually does not consider hardware leakages. In fact, the malicious utilization of hardware resources as covert channels might have severe consequences to the privacy of the customers. Our work demonstrates that malicious customers of such technologies can utilize the LLC as the covert channel to obtain sensitive information from a co-resident victim. We show that the LLC is an attractive resource to be targeted by attackers, as it offers high resolution and, unlike previous microarchitectural attacks, does not require core-colocation. Particularly concerning are the cases in which cryptography is compromised, as it is the main component of every security solution. In this sense, the presented work does not only introduce three attack variants that can be applicable in different scenarios, but also demonstrates the ability to recover cryptographic keys (e.g. AES and RSA) and TLS session messages across VMs, bypassing sandboxing techniques. Finally, two countermeasures to prevent microarchitectural attacks in general and LLC attacks in particular from retrieving fine- grain information are presented. Unlike previously proposed countermeasures, ours do not add permanent overheads in the system but can be utilized as preemptive defenses. The first identifies leakages in cryptographic software that can potentially lead to key extraction, and thus, can be utilized by cryptographic code designers to ensure the sanity of their libraries before deployment. The second detects microarchitectural attacks embedded into innocent-looking binaries, preventing them from being posted in official application repositories that usually have the full trust of the customer

    Working With Incremental Spatial Data During Parallel (GPU) Computation

    Get PDF
    Central to many complex systems, spatial actors require an awareness of their local environment to enable behaviours such as communication and navigation. Complex system simulations represent this behaviour with Fixed Radius Near Neighbours (FRNN) search. This algorithm allows actors to store data at spatial locations and then query the data structure to find all data stored within a fixed radius of the search origin. The work within this thesis answers the question: What techniques can be used for improving the performance of FRNN searches during complex system simulations on Graphics Processing Units (GPUs)? It is generally agreed that Uniform Spatial Partitioning (USP) is the most suitable data structure for providing FRNN search on GPUs. However, due to the architectural complexities of GPUs, the performance is constrained such that FRNN search remains one of the most expensive common stages between complex systems models. Existing innovations to USP highlight a need to take advantage of recent GPU advances, reducing the levels of divergence and limiting redundant memory accesses as viable routes to improve the performance of FRNN search. This thesis addresses these with three separate optimisations that can be used simultaneously. Experiments have assessed the impact of optimisations to the general case of FRNN search found within complex system simulations and demonstrated their impact in practice when applied to full complex system models. Results presented show the performance of the construction and query stages of FRNN search can be improved by over 2x and 1.3x respectively. These improvements allow complex system simulations to be executed faster, enabling increases in scale and model complexity

    On the design of architecture-aware algorithms for emerging applications

    Get PDF
    This dissertation maps various kernels and applications to a spectrum of programming models and architectures and also presents architecture-aware algorithms for different systems. The kernels and applications discussed in this dissertation have widely varying computational characteristics. For example, we consider both dense numerical computations and sparse graph algorithms. This dissertation also covers emerging applications from image processing, complex network analysis, and computational biology. We map these problems to diverse multicore processors and manycore accelerators. We also use new programming models (such as Transactional Memory, MapReduce, and Intel TBB) to address the performance and productivity challenges in the problems. Our experiences highlight the importance of mapping applications to appropriate programming models and architectures. We also find several limitations of current system software and architectures and directions to improve those. The discussion focuses on system software and architectural support for nested irregular parallelism, Transactional Memory, and hybrid data transfer mechanisms. We believe that the complexity of parallel programming can be significantly reduced via collaborative efforts among researchers and practitioners from different domains. This dissertation participates in the efforts by providing benchmarks and suggestions to improve system software and architectures.Ph.D.Committee Chair: Bader, David; Committee Member: Hong, Bo; Committee Member: Riley, George; Committee Member: Vuduc, Richard; Committee Member: Wills, Scot

    Cycle-accurate multicore performance models on FPGAs

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 159-165).The goal of this project is to improve computer architecture by accelerating cycle-accurate performance modeling of multicore processors using FPGAs. Contributions include a distributed technique controlling simulation on a highly-parallel substrate, hardware design techniques to reduce development effort, and a specific framework for modeling shared-memory multicore processors paired with realistic On-Chip Networks.by Michael Pellauer.Ph.D

    The instruction of systolic array (ISA) and simulation of parallel algorithms

    Get PDF
    Systolic arrays have proved to be well suited for Very Large Scale Integrated technology (VLSI) since they: -Consist of a regular network of simple processing cells, -Use local communication between the processing cells only, -Exploit a maximal degree of parallelism. However, systolic arrays have one main disadvantage compared with other parallel computer architectures: they are special purpose architectures only capable of executing one algorithm, e.g., a systolic array designed for sorting cannot be used to form matrix multiplication. Several approaches have been made to make systolic arrays more flexible, in order to be able to handle different problems on a single systolic array. In this thesis an alternative concept to a VLSI-architecture the Soft-Systolic Simulation System (SSSS), is introduced and developed as a working model of virtual machine with the power to simulate hard systolic arrays and more general forms of concurrency such as the SIMD and MIMD models of computation. The virtual machine includes a processing element consisting of a soft-systolic processor implemented in the virtual.machine language. The processing element considered here was a very general element which allows the choice of a wide range of arithmetic and logical operators and allows the simulation of a wide class of algorithms but in principle extra processing cells can be added making a library and this library be tailored to individual needs. The virtual machine chosen for this implementation is the Instruction Systolic Array (ISA). The ISA has a number of interesting features, firstly it has been used to simulate all SIMD algorithms and many MIMD algorithms by a simple program transformation technique, further, the ISA can also simulate the so-called wavefront processor algorithms, as well as many hard systolic algorithms. The ISA removes the need for the broadcasting of data which is a feature of SIMD algorithms (limiting the size of the machine and its cycle time) and also presents a fairly simple communication structure for MIMD algorithms. The model of systolic computation developed from the VLSI approach to systolic arrays is such that the processing surface is fixed, as are the processing elements or cells by virtue of their being embedded in the processing surface. The VLSI approach therefore freezes instructions and hardware relative to the movement of data with the virtual machine and softsystolic programming retaining the constructions of VLSI for array design features such as regularity, simplicity and local communication, allowing the movement of instructions with respect to data. Data can be frozen into the structure with instructions moving systolically. Alternatively both the data and instructions can move systolically around the virtual processors, (which are deemed fixed relative to the underlying architecture). The ISA is implemented in OCCAM programs whose execution and output implicitly confirm the correctness of the design. The soft-systolic preparation comprises of the usual operating system facilities for the creation and modification of files during the development of new programs and ISA processor elements. We allow any concurrent high level language to be used to model the softsystolic program. Consequently the Replicating Instruction Systolic Array Language (RI SAL) was devised to provide a very primitive program environment to the ISA but adequate for testing. RI SAL accepts instructions in an assembler-like form, but is fairly permissive about the format of statements, subject of course to syntax. The RI SAL compiler is adopted to transform the soft-systolic program description (RISAL) into a form suitable for the virtual machine (simulating the algorithm) to run. Finally we conclude that the principles mentioned here can form the basis for a soft-systolic simulator using an orthogonally connected mesh of processors. The wide range of algorithms which the ISA can simulate make it suitable for a virtual simulating grid
    corecore