50 research outputs found

    On Cyber-Physical Security of Smart Grid: Data Integrity Attacks and Experiment Platform

    Get PDF
    A Smart Grid is a digitally enabled electric power grid that integrates the computation and communication technologies from cyber world with the sensors and actuators from physical world. Due to the system complexity, typically the high cohesion of communication and power system, the Smart Grid innovation introduces new and fundamentally different security vulnerabilities and risks. In this work, two important research aspects about cyber-physical security of Smart Grid are addressed: (i) The construction, impact and countermeasure of data integrity attacks; and (ii) The design and implementation of general cyber-physical security experiment platform. For data integrity attacks: based on the system model of state estimation process in Smart Grid, firstly, a data integrity attack model is formulated, such that the attackers can generate financial benefits from the real-time electrical market operations. Then, to reduce the required knowledge about the targeted power system when launching attacks, an online attack approach is proposed, such that the attacker is able to construct the desired attacks without the network information of power system. Furthermore, a network information attacking strategy is proposed, in which the most vulnerable meters can be directly identified and the desired measurement perturbations can be achieved by strategically manipulating the network information. Besides the attacking strategies, corresponding countermeasures based on the sparsity of attack vectors and robust state estimator are provided respectively. For the experiment platform: ScorePlus, a software-hardware hybrid and federated experiment environment for Smart Grid is presented. ScorePlus incorporates both software emulator and hardware testbed, such that they all follow the same architecture, and the same Smart Grid application program can be tested on either of them without any modification; ScorePlus provides a federated environment such that multiple software emulators and hardware testbeds at different locations are able to connect and form a unified Smart Grid system; ScorePlus software is encapsulated as a resource plugin in OpenStack cloud computing platform, such that it supports massive deployments with large scale test cases in cloud infrastructure

    On the Control of Microgrids Against Cyber-Attacks: A Review of Methods and Applications

    Get PDF
    Nowadays, the use of renewable generations, energy storage systems (ESSs) and microgrids (MGs) has been developed due to better controllability of distributed energy resources (DERs) as well as their cost-effective and emission-aware operation. The development of MGs as well as the use of hierarchical control has led to data transmission in the communication platform. As a result, the expansion of communication infrastructure has made MGs as cyber-physical systems (CPSs) vulnerable to cyber-attacks (CAs). Accordingly, prevention, detection and isolation of CAs during proper control of MGs is essential. In this paper, a comprehensive review on the control strategies of microgrids against CAs and its defense mechanisms has been done. The general structure of the paper is as follows: firstly, MGs operational conditions, i.e., the secure or insecure mode of the physical and cyber layers are investigated and the appropriate control to return to a safer mode are presented. Then, the common MGs communication system is described which is generally used for multi-agent systems (MASs). Also, classification of CAs in MGs has been reviewed. Afterwards, a comprehensive survey of available researches in the field of prevention, detection and isolation of CA and MG control against CA are summarized. Finally, future trends in this context are clarified

    Effective Management of Energy Internet in Renewable Hybrid Microgrids : A Secured Data Driven Resilient Architecture

    Get PDF
    This paper proposes a two-layer in-depth secured management architecture for the optimal operation of energy internet in hybrid microgrids considering wind turbines, photovoltaics, fuel cell unit, and microturbines. In the physical layer of the proposed architecture, the operation of the grid is formulated as a single objective problem that is solved using teacher learning-based optimization (TLBO). Regarding the cyber layer of the proposed architecture, a two-level intrusion detection system (IDS) is proposed to detect various cyber-attacks (i.e. Sybil attacks, spoofing attacks, false data injection attacks) on wireless-based advanced metering infrastructures. The sequential probability ratio testing (SPRT) approach is utilized in both levels of the proposed IDS to detect cyber-attacks based on a sequence of anomalies rather than only one piece of evidence. The feasibility and performance of the proposed architecture are examined on IEEE 33-bus test system and the results are provided for both islanded and grid-connected operation modes.©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Projections of Cyber Attacks on Stability of DC Microgrids - Modeling Principles and Solution

    Get PDF

    Cyber-Resilient Control Structures in DC Microgrids with Cyber-Physical Threats

    Get PDF

    Cyber Physical System Security — DoS Attacks on Synchrophasor Networks in the Smart Grid

    Get PDF
    With the rapid increase of network-enabled sensors, switches, and relays, cyber-physical system security in the smart grid has become important. The smart grid operation demands reliable communication. Existing encryption technologies ensures the authenticity of delivered messages. However, commonly applied technologies are not able to prevent the delay or drop of smart grid communication messages. In this dissertation, the author focuses on the network security vulnerabilities in synchrophasor network and their mitigation methods. Side-channel vulnerabilities of the synchrophasor network are identified. Synchrophasor network is one of the most important technologies in the smart grid transmission system. Experiments presented in this dissertation shows that a DoS attack that exploits the side-channel vulnerability against the synchrophasor network can lead to the power system in stability. Side-channel analysis extracts information by observing implementation artifacts without knowing the actual meaning of the information. Synchrophasor network consist of Phasor Measurement Units (PMUs) use synchrophasor protocol to transmit measurement data. Two side-channels are discovered in the synchrophasor protocol. Side-channel analysis based Denial of Service (DoS) attacks differentiate the source of multiple PMU data streams within an encrypted tunnel and only drop selected PMU data streams. Simulations on a power system shows that, without any countermeasure, a power system can be subverted after an attack. Then, mitigation methods from both the network and power grid perspectives are carried out. From the perspective of network security study, side-channel analysis, and protocol transformation has the potential to assist the PMU communication to evade attacks lead with protocol identifications. From the perspective of power grid control study, to mitigate PMU DoS attacks, Cellular Computational Network (CCN) prediction of PMU data is studied and used to implement a Virtual Synchrophasor Network (VSN), which learns and mimics the behaviors of an objective power grid. The data from VSN is used by the Automatic Generation Controllers (AGCs) when the PMU packets are disrupted by DoS attacks. Real-time experimental results show the CCN based VSN effectively inferred the missing data and mitigated the negative impacts of DoS attacks. In this study, industry-standard hardware PMUs and Real-Time Digital Power System Simulator (RTDS) are used to build experimental environments that are as close to actual production as possible for this research. The above-mentioned attack and mitigation methods are also tested on the Internet. Man-In-The-Middle (MITM) attack of PMU traffic is performed with Border Gateway Protocol (BGP) hijacking. A side-channel analysis based MITM attack detection method is also investigated. A game theory analysis is performed to give a broade

    Power Market Cybersecurity and Profit-targeting Cyberattacks

    Get PDF
    The COVID-19 pandemic has forced many companies and business to operate through remote platforms, which has made everyday life and everyone more digitally connected than ever before. The cybersecurity has become a bigger priority in all aspects of life. A few real-world cases have demonstrated the current capability of cyberattacks as in [1], [2], and [3]. These cases invalidate the traditional belief that cyberattacks are unable to penetrate real-world industrial systems. Beyond the physical damage, some attackers target financial arbitrage advantages brought by false data injection attacks (FDIAs) [4]. Malicious breaches into power market operations could induce catastrophic consequences on fair financial settlements and reliable transmission services. In this dissertation, an in-depth study is conducted to investigate power market cybersecurity and profit-targeting cyberattacks. In the first work, we demonstrate the importance of market-level behavior in defending cyberattacks and designing cyberattacks. A market-level defense analysis is developed to help operators identify cyberattacks, and an LMP-disguising attack strategy is developed to disguise the abnormal LMPs, which can bypass both the bad data detection and market-level detection. In the second work, we propose a comprehensive CVA model for delivering a detailed analysis of four aspects of vulnerability: highly probable cyberattack targets, devastating attack targets, risky load levels, and mitigation ability under different degrees of defense. In the third work, we identify that revenue adequacy, a fundamental power market operation criterion, has not been analyzed under the context of cybersecurity, and we explore the impact of FDIAs targeting real-time (RT) market operations on ISO revenue adequacy analytically and numerically. In the last work, we extend the power system cybersecurity analysis to multi-energy system (MES) framework. An optimally coordinated (OC-FDIA) targeting MES is proposed. Then, we show that the OC-FDIA cause much more severe damages than single-system FDIA and uncoordinated FDIAs. Further, an effective countermeasure is developed against the proposed OCFDIA based on deep learning technique (DL)

    Topology Attacks on Power System Operation and Consequences Analysis

    Get PDF
    abstract: The large distributed electric power system is a hierarchical network involving the transportation of power from the sources of power generation via an intermediate densely connected transmission network to a large distribution network of end-users at the lowest level of the hierarchy. At each level of the hierarchy (generation/ trans- mission/ distribution), the system is managed and monitored with a combination of (a) supervisory control and data acquisition (SCADA); and (b) energy management systems (EMSs) that process the collected data and make control and actuation de- cisions using the collected data. However, at all levels of the hierarchy, both SCADA and EMSs are vulnerable to cyber attacks. Furthermore, given the criticality of the electric power infrastructure, cyber attacks can have severe economic and social con- sequences. This thesis focuses on cyber attacks on SCADA and EMS at the transmission level of the electric power system. The goal is to study the consequences of three classes of cyber attacks that can change topology data. These classes include: (i) unobservable state-preserving cyber attacks that only change the topology data; (ii) unobservable state-and-topology cyber-physical attacks that change both states and topology data to enable a coordinated physical and cyber attack; and (iii) topology- targeted man-in-the-middle (MitM) communication attacks that alter topology data shared during inter-EMS communication. Specically, attack class (i) and (ii) focus on the unobservable attacks on single regional EMS while class (iii) focuses on the MitM attacks on communication links between regional EMSs. For each class of attacks, the theoretical attack model and the implementation of attacks are provided, and the worst-case attack and its consequences are exhaustively studied. In particularly, for class (ii), a two-stage optimization problem is introduced to study worst-case attacks that can cause a physical line over ow that is unobservable in the cyber layer. The long-term implication and the system anomalies are demonstrated via simulation. For attack classes (i) and (ii), both mathematical and experimental analyses sug- gest that these unobservable attacks can be limited or even detected with resiliency mechanisms including load monitoring, anomalous re-dispatches checking, and his- torical data comparison. For attack class (iii), countermeasures including anomalous tie-line interchange verication, anomalous re-dispatch alarms, and external contin- gency lists sharing are needed to thwart such attacks.Dissertation/ThesisMasters Thesis Electrical Engineering 201
    corecore