9,297 research outputs found

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    Magnetic and radar sensing for multimodal remote health monitoring

    Get PDF
    With the increased life expectancy and rise in health conditions related to aging, there is a need for new technologies that can routinely monitor vulnerable people, identify their daily pattern of activities and any anomaly or critical events such as falls. This paper aims to evaluate magnetic and radar sensors as suitable technologies for remote health monitoring purpose, both individually and fusing their information. After experiments and collecting data from 20 volunteers, numerical features has been extracted in both time and frequency domains. In order to analyse and verify the validation of fusion method for different classifiers, a Support Vector Machine with a quadratic kernel, and an Artificial Neural Network with one and multiple hidden layers have been implemented. Furthermore, for both classifiers, feature selection has been performed to obtain salient features. Using this technique along with fusion, both classifiers can detect 10 different activities with an accuracy rate of approximately 96%. In cases where the user is unknown to the classifier, an accuracy of approximately 92% is maintained

    Micro-doppler-based in-home aided and unaided walking recognition with multiple radar and sonar systems

    Get PDF
    Published in IET Radar, Sonar and Navigation. Online first 21/06/2016.The potential for using micro-Doppler signatures as a basis for distinguishing between aided and unaided gaits is considered in this study for the purpose of characterising normal elderly gait and assessment of patient recovery. In particular, five different classes of mobility are considered: normal unaided walking, walking with a limp, walking using a cane or tripod, walking with a walker, and using a wheelchair. This presents a challenging classification problem as the differences in micro-Doppler for these activities can be quite slight. Within this context, the performance of four different radar and sonar systems – a 40 kHz sonar, a 5.8 GHz wireless pulsed Doppler radar mote, a 10 GHz X-band continuous wave (CW) radar, and a 24 GHz CW radar – is evaluated using a broad range of features. Performance improvements using feature selection is addressed as well as the impact on performance of sensor placement and potential occlusion due to household objects. Results show that nearly 80% correct classification can be achieved with 10 s observations from the 24 GHz CW radar, whereas 86% performance can be achieved with 5 s observations of sonar

    Multisensor Data Fusion for Human Activities Classification and Fall Detection

    Get PDF
    Significant research exists on the use of wearable sensors in the context of assisted living for activities recognition and fall detection, whereas radar sensors have been studied only recently in this domain. This paper approaches the performance limitation of using individual sensors, especially for classification of similar activities, by implementing information fusion of features extracted from experimental data collected by different sensors, namely a tri-axial accelerometer, a micro-Doppler radar, and a depth camera. Preliminary results confirm that combining information from heterogeneous sensors improves the overall performance of the system. The classification accuracy attained by means of this fusion approach improves by 11.2% compared to radar-only use, and by 16.9% compared to the accelerometer. Furthermore, adding features extracted from a RGB-D Kinect sensor, the overall classification accuracy increases up to 91.3%

    Gravitational wave detection with single-laser atom interferometers

    Get PDF
    We present a new general design approach of a broad-band detector of gravitational radiation that relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser will be used for operating the two atom interferometers. We consider atoms in the atom interferometers not only as perfect inertial reference sensors, but also as highly stable clocks. Atomic coherence is intrinsically stable and can be many orders of magnitude more stable than a laser. The unique one-laser configuration allows us to then apply time-delay interferometry to the responses of the two atom interferometers, thereby canceling the laser phase fluctuations while preserving the gravitational wave signal in the resulting data set. Our approach appears very promising. We plan to investigate further its practicality and detailed sensitivity analysis.Comment: Paper submitted to General Relativity and Gravitation as part of the prceedings of the International Workshop on Gravitational Waves Detection with Atom Interferometry (Florence, February 2009)

    Precision atomic gravimeter based on Bragg diffraction

    Get PDF
    We present a precision gravimeter based on coherent Bragg diffraction of freely falling cold atoms. Traditionally, atomic gravimeters have used stimulated Raman transitions to separate clouds in momentum space by driving transitions between two internal atomic states. Bragg interferometers utilize only a single internal state, and can therefore be less susceptible to environmental perturbations. Here we show that atoms extracted from a magneto-optical trap using an accelerating optical lattice are a suitable source for a Bragg atom interferometer, allowing efficient beamsplitting and subsequent separation of momentum states for detection. Despite the inherently multi-state nature of atom diffraction, we are able to build a Mach-Zehnder interferometer using Bragg scattering which achieves a sensitivity to the gravitational acceleration of Δg/g=2.7×10−9\Delta g/g = 2.7\times10^{-9} with an integration time of 1000s. The device can also be converted to a gravity gradiometer by a simple modification of the light pulse sequence.Comment: 13 pages, 11 figure

    Evaluation of Continuous Monitoring as a Tool for Municipal Stormwater Management Programs

    Get PDF
    The purpose of this study is to evaluate the uncertainty attributable to inadequate temporal sampling of stormwater discharge and water quality, and understand its implications for meeting monitoring objectives relevant to municipal separate storm sewer systems (MS4s). A methodology is presented to evaluate uncertainty attributable to inadequate temporal sampling of continuous stormflow and water quality, and a case study demonstrates the application of the methodology to six small urban watersheds (0.8-6.8 km2) and six large rural watersheds (30-16,192 km2) in Virginia. Results indicate the necessity of high-frequency continuous monitoring for accurately capturing multiple monitoring objectives, including illicit discharges, acute toxicity events, and stormflow pollutant concentrations and loads, as compared to traditional methods of sampling. For example, 1-h sampling in small urban watersheds and daily sampling in large rural watersheds would introduce uncertainty in capturing pollutant loads of 3–46% and 10–28%, respectively. Overall, the outcomes from this study highlight how MS4s can leverage continuous monitoring to meet multiple objectives under current and future regulatory environments
    • …
    corecore