98,606 research outputs found

    Smartwatch-Based IoT Fall Detection Application

    Get PDF
    This paper proposes using only the streaming accelerometer data from a commodity-based smartwatch (IoT) device to detect falls. The smartwatch is paired with a smartphone as a means for performing the computation necessary for the prediction of falls in realtime without incurring latency in communicating with a cloud server while also preserving data privacy. The majority of current fall detection applications require specially designed hardware and software which make them expensive and inaccessible to the general public. Moreover, a fall detection application that uses a wrist worn smartwatch for data collection has the added benefit that it can be perceived as a piece of jewelry and thus non-intrusive. We experimented with both Support Vector Machine and Naive Bayes machine learning algorithms for the creation of the fall model. We demonstrated that by adjusting the sampling frequency of the streaming data, computing acceleration features over a sliding window, and using a Naive Bayes machine learning model, we can obtain the true positive rate of fall detection in real-world setting with 93.33% accuracy. Our result demonstrated that using a commodity-based smartwatch sensor can yield fall detection results that are competitive with those of custom made expensive sensors

    Towards a smart fall detection system using wearable sensors

    Get PDF
    Empirical thesis."A thesis submitted as part of a cotutelle programme in partial fulfilment of Coventry University’s and Macquarie University’s requirements for the degree of Doctor of Philosophy" -- title page.Bibliography: pages 183-205.1. Introduction -- 2. Literature review -- 3. Falls and activities of daily living datasets -- 4. An analysis of fall-detection approaches -- 5. Event-triggered machine-learning approach (EvenT-ML) -- 6. Genetic-algorithm-based feature-selection technique for fall detection (GA-Fade) -- 7. Conclusions and future work -- References -- Appendices.A fall-detection system is employed in order to monitor an older person or infirm patient and alert their carer when a fall occurs. Some studies use wearable-sensor technologies to detect falls, as those technologies are getting smaller and cheaper. To date, wearable-sensor-based fall-detection approaches are categorised into threshold and machine-learning-based approaches. A high number of false alarms and a high computational cost are issues that are faced by the threshold- and machine-learning basedapproaches, respectively. The goal of this thesis is to address those issues by developing a novel low-computational-cost machine-learning-based approach for fall detection using accelerometer sensors.Toward this goal, existing fall-detection approaches (both threshold- and machine-learning-based) are explored and evaluated using publicly accessible datasets: Cogent, SisFall, and FARSEEING. Four machine-learning algorithms are implemented in this study: Classification and Regression Tree (CART), k-Nearest Neighbour (k-NN), Logistic Regression (LR), and Support Vector Machine (SVM). The experimental results show that using the correct size and type for the sliding window to segment the data stream can give the machine-learning-based approach a better detection rate than the threshold-based approach, though the difference between the threshold- and machine-learning-based approaches is not significant in some cases.To further improve the performance of the machine-learning-based approaches, fall stages (pre-impact, impact, and post-impact) are used as a basis for the feature extraction process. A novel approach called an event-triggered machine-learning approach for fall detection (EvenT-ML) is proposed, which can correctly align fall stages into a data segment and extract features based on those stages. Correctly aligning the stages to a data segment is difficult because of multiple high peaks, where a high peak usually indicates the impact stage, often occurring during the pre-impact stage. EvenT-ML significantly improves the detection rate and reduces the computational cost of existing machine-learning-based approaches, with an up to 97.6% F-score and a reduction in computational cost by a factor of up to 80 during feature extraction. Also, this technique can significantly outperform the threshold-based approach in all cases.Finally, to reduce the computational cost of EvenT-ML even further, the number of features needs to be reduced through a feature-selection process. A novel genetic-algorithm-based feature-selection technique (GA-Fade) is proposed, which uses multiple criteria to select features. GA-Fade considers the detection rate, the computational cost, and the number of sensors used as the selection criteria. GAFade is able to reduce the number of features by 60% on average, while achieving an F-score of up to 97.7%. The selected features also can give a significantly lower total computational cost than features that are selected by two single-criterion-based feature-selection techniques: SelectKBest and Recursive Feature Elimination.In summary, the techniques presented in this thesis significantly increase the detection rate of the machine-learning-based approach, so that a more reliable fall detection system can be achieved. Furthermore, as an additional advantage, these techniques can significantly reduce the computational cost of the machine-learning approach. This advantage indicates that the proposed machine-learning-based approach is more applicable to a small wearable device with limited resources (e.g., computing power and battery capacity) than the existing machine-learning-based approaches.Mode of access: World wide web1 online resource (xx, 211 pages) diagrams, graphs, table

    Wearable Sensor Gait Analysis for Fall Detection Using Deep Learning Methods

    Get PDF
    World Health Organization (WHO) data show that around 684,000 people die from falls yearly, making it the second-highest mortality rate after traffic accidents [1]. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. In light of the recent widespread adoption of wearable sensors, it has become increasingly critical that fall detection models are developed that can effectively process large and sequential sensor signal data. Several researchers have recently developed fall detection algorithms based on wearable sensor data. However, real-time fall detection remains challenging because of the wide range of gait variations in older. Choosing the appropriate sensor and placing it in the most suitable location are essential components of a robust real-time fall detection system. This dissertation implements various detection models to analyze and mitigate injuries due to falls in the senior community. It presents different methods for detecting falls in real-time using deep learning networks. Several sliding window segmentation techniques are developed and compared in the first study. As a next step, various methods are implemented and applied to prevent sampling imbalances caused by the real-world collection of fall data. A study is also conducted to determine whether accelerometers and gyroscopes can distinguish between falls and near-falls. According to the literature survey, machine learning algorithms produce varying degrees of accuracy when applied to various datasets. The algorithm’s performance depends on several factors, including the type and location of the sensors, the fall pattern, the dataset’s characteristics, and the methods used for preprocessing and sliding window segmentation. Other challenges associated with fall detection include the need for centralized datasets for comparing the results of different algorithms. This dissertation compares the performance of varying fall detection methods using deep learning algorithms across multiple data sets. Furthermore, deep learning has been explored in the second application of the ECG-based virtual pathology stethoscope detection system. A novel real-time virtual pathology stethoscope (VPS) detection method has been developed. Several deep-learning methods are evaluated for classifying the location of the stethoscope by taking advantage of subtle differences in the ECG signals. This study would significantly extend the simulation capabilities of standard patients by allowing medical students and trainees to perform realistic cardiac auscultation and hear cardiac auscultation in a clinical environment

    A Machine Learning Multi-Class Approach for Fall Detection Systems Based on Wearable Sensors with a Study on Sampling Rates Selection

    Get PDF
    Falls are dangerous for the elderly, often causing serious injuries especially when the fallen person stays on the ground for a long time without assistance. This paper extends our previous work on the development of a Fall Detection System (FDS) using an inertial measurement unit worn at the waist. Data come from SisFall, a publicly available dataset containing records of Activities of Daily Living and falls. We first applied a preprocessing and a feature extraction stage before using five Machine Learning algorithms, allowing us to compare them. Ensemble learning algorithms such as Random Forest and Gradient Boosting have the best performance, with a Sensitivity and Specificity both close to 99%. Our contribution is: a multi-class classification approach for fall detection combined with a study of the effect of the sensors’ sampling rate on the performance of the FDS. Our multi-class classification approach splits the fall into three phases: pre-fall, impact, post-fall. The extension to a multi-class problem is not trivial and we present a well-performing solution. We experimented sampling rates between 1 and 200 Hz. The results show that, while high sampling rates tend to improve performance, a sampling rate of 50 Hz is generally sufficient for an accurate detection

    Comparative analysis of real-time fall detection using fuzzy logic web services and machine learning

    Get PDF
    Falls are the main cause of susceptibility to severe injuries in many humans, especially for older adults aged 65 and over. Typically, falls are being unnoticed and interpreted as a mere inevitable accident. Various wearable fall warning devices have been created recently for older people. However, most of these devices are dependent on local data processing. Various algorithms are used in wearable sensors to track a real-time fall effectively, which focuses on fall detection via fuzzy-as-a-service based on IEEE 1855–2016, Java Fuzzy Markup Language (FML) and service-oriented architecture. Moreover, several approaches are used to detect a fall using machine learning techniques via human movement positional data to avert any accidents. For fuzzy logic web services, analysis is performed using wearable accelerometer and gyroscope sensors, whereas in machine learning techniques, k-NN, decision tree, random forest and extreme gradient boost are used to differentiate between a fall and non-fall. This study aims to carry out a comparative analysis of real-time fall detection using fuzzy logic web services and machine learning techniques and aims to determine which one is better for real-time fall detection. Research findings exhibit that the proposed fuzzy-as-a-service could easily differentiate between fall and non-fall occurrences in a real-time environment with an accuracy, sensitivity and specificity of 90%, 88.89% and 91.67%, respectively, while the random forest algorithm of machine learning achieved 99.19%, 98.53% and 99.63%, respectively

    BlockTheFall: Wearable Device-based Fall Detection Framework Powered by Machine Learning and Blockchain for Elderly Care

    Full text link
    Falls among the elderly are a major health concern, frequently resulting in serious injuries and a reduced quality of life. In this paper, we propose "BlockTheFall," a wearable device-based fall detection framework which detects falls in real time by using sensor data from wearable devices. To accurately identify patterns and detect falls, the collected sensor data is analyzed using machine learning algorithms. To ensure data integrity and security, the framework stores and verifies fall event data using blockchain technology. The proposed framework aims to provide an efficient and dependable solution for fall detection with improved emergency response, and elderly individuals' overall well-being. Further experiments and evaluations are being carried out to validate the effectiveness and feasibility of the proposed framework, which has shown promising results in distinguishing genuine falls from simulated falls. By providing timely and accurate fall detection and response, this framework has the potential to substantially boost the quality of elderly care.Comment: Accepted to publish in The 1st IEEE International Workshop on Digital and Public Healt

    Elderly Fall Detection and Fall Direction Detection via Various Machine Learning Algorithms Using Wearable Sensors

    Get PDF
    The world population is aging rapidly. Some of the elderly live alone and it is observed that the elderly who live with their families frequently have to stay at home alone, especially during the working hours of adult members of the family. Falling while alone at home often results in fatal injuries and even death in elderly individuals. Fall detection systems detect falls and provide emergency healthcare services quickly. In this study, a two-step fall detection and fall direction detection system has been developed by using a public dataset and by testing 5 different machine learning algorithms comparatively. If a fall is detected in the first stage, the second stage is started and the direction of the fall is determined. In this way, the fall direction of the elderly individual can be determined for use in future researches, and a system that enables necessary measures such as opening an airbag in the direction of the fall is developed. Thus, a gradual fall detection and fall direction detection system has been developed by determining the best classifying algorithms. As a result, it has been determined that Ensemble Subspace k-NN classifier performs a little more successful classification compared to other classifiers. The classification via the test data corresponding to 30% of the total data, which was never used during the training phase, has been performed with 99.4% accuracy, and then 97.2% success has been achieved in determining the direction of falling

    A simulator to support machine learning-based wearable fall detection systems

    Get PDF
    People’s life expectancy is increasing, resulting in a growing elderly population. That population is subject to dependency issues, falls being a problematic one due to the associated health complications. Some projects are trying to enhance the independence of elderly people by monitoring their status, typically by means of wearable devices. These devices often feature Machine Learning (ML) algorithms for fall detection using accelerometers. However, the software deployed often lacks reliable data for the models’ training. To overcome such an issue, we have developed a publicly available fall simulator capable of recreating accelerometer fall samples of two of the most common types of falls: syncope and forward. Those simulated samples are like real falls recorded using real accelerometers in order to use them later as input for ML applications. To validate our approach, we have used different classifiers over both simulated falls and data from two public datasets based on real data. Our tests show that the fall simulator achieves a high accuracy for generating accelerometer data from a fall, allowing to create larger datasets for training fall detection software in wearable devices.Junta de Comunidades de Castilla-La ManchaComunidad de MadridMinisterio de Ciencia e Innovació

    MLFatigueDetection Machine Learning Based Walking Fatigue Detection

    Get PDF
    Leg fatigue can influence the gait patterns, therefore declining the postural stability and the motor performance, increasing the risk of falls. In order to improve the earlier detection of risks and the application of fall prevention strategies, automated solutions based on gait analysis must be developed. A sector of the population at risk is the workforce where a majority of workers admits to be fatigued and where falls can lead to serious workplace injuries or even deaths. In these cases, having the ability to detect if the user is fatigued in real time by simply using the motion sensors on the smartphone and processing it with machine learning can lead to the prevention of falls and the consequences these bring. Phones andwearable devices were studied for their ability to be used to extract inertial sensor’s data to provide enough information for the fatigue detection. Supervised machine learning algorithms, such as Support Vector Machines (SVM) and Neural Networks, will be used to process this information for fatigue level classification. Their performance will then be compared to find the best algorithm for fatigue detection. In addition to this comparative work, different conditions for the data collection and processing were tested in an effort to discover the optimal conditions for the implementation of the algorithms

    Using Machine Learning Techniques to Optimize Fall Detection Algorithms in Smart Wristband

    Get PDF
    The consumer electronics market is already saturated with wearable devices that intend to be used to detect falls and request help from carers or family members. However, these products have a high rate of false alarms which affect their reliable performance. To provide the high accuracy and high precision of fall detection for the elderly, this paper presents a machine learning approach to improve the fall detection accuracy and reduce the false alarms. Three machine learning algorithms are deployed in this research, namely the K-Means, Perceptron Neural Network (PNN), and Convolutional Neural Network (CNN) algorithms. A development board with a 9-axis inertial sensor unit is used as a prototype of wristband to collect data and identify falls from seven daily activities. These data is then used to train and test machine learning algorithms. Experimental results show that the CNN algorithm achieves the highest accuracy comparing with K-mean, PNN and the algorithm used in the existing wristbands
    • …
    corecore