1,611 research outputs found

    Micro-Doppler Based Human-Robot Classification Using Ensemble and Deep Learning Approaches

    Full text link
    Radar sensors can be used for analyzing the induced frequency shifts due to micro-motions in both range and velocity dimensions identified as micro-Doppler (μ\boldsymbol{\mu}-D) and micro-Range (μ\boldsymbol{\mu}-R), respectively. Different moving targets will have unique μ\boldsymbol{\mu}-D and μ\boldsymbol{\mu}-R signatures that can be used for target classification. Such classification can be used in numerous fields, such as gait recognition, safety and surveillance. In this paper, a 25 GHz FMCW Single-Input Single-Output (SISO) radar is used in industrial safety for real-time human-robot identification. Due to the real-time constraint, joint Range-Doppler (R-D) maps are directly analyzed for our classification problem. Furthermore, a comparison between the conventional classical learning approaches with handcrafted extracted features, ensemble classifiers and deep learning approaches is presented. For ensemble classifiers, restructured range and velocity profiles are passed directly to ensemble trees, such as gradient boosting and random forest without feature extraction. Finally, a Deep Convolutional Neural Network (DCNN) is used and raw R-D images are directly fed into the constructed network. DCNN shows a superior performance of 99\% accuracy in identifying humans from robots on a single R-D map.Comment: 6 pages, accepted in IEEE Radar Conference 201

    Recent Advances in mmWave-Radar-Based Sensing, Its Applications, and Machine Learning Techniques: A Review

    Get PDF
    Human gesture detection, obstacle detection, collision avoidance, parking aids, automotive driving, medical, meteorological, industrial, agriculture, defense, space, and other relevant fields have all benefited from recent advancements in mmWave radar sensor technology. A mmWave radar has several advantages that set it apart from other types of sensors. A mmWave radar can operate in bright, dazzling, or no-light conditions. A mmWave radar has better antenna miniaturization than other traditional radars, and it has better range resolution. However, as more data sets have been made available, there has been a significant increase in the potential for incorporating radar data into different machine learning methods for various applications. This review focuses on key performance metrics in mmWave-radar-based sensing, detailed applications, and machine learning techniques used with mmWave radar for a variety of tasks. This article starts out with a discussion of the various working bands of mmWave radars, then moves on to various types of mmWave radars and their key specifications, mmWave radar data interpretation, vast applications in various domains, and, in the end, a discussion of machine learning algorithms applied with radar data for various applications. Our review serves as a practical reference for beginners developing mmWave-radar-based applications by utilizing machine learning techniques.publishedVersio

    Edge Artificial Intelligence for Real-Time Target Monitoring

    Get PDF
    The key enabling technology for the exponentially growing cellular communications sector is location-based services. The need for location-aware services has increased along with the number of wireless and mobile devices. Estimation problems, and particularly parameter estimation, have drawn a lot of interest because of its relevance and engineers' ongoing need for higher performance. As applications expanded, a lot of interest was generated in the accurate assessment of temporal and spatial properties. In the thesis, two different approaches to subject monitoring are thoroughly addressed. For military applications, medical tracking, industrial workers, and providing location-based services to the mobile user community, which is always growing, this kind of activity is crucial. In-depth consideration is given to the viability of applying the Angle of Arrival (AoA) and Receiver Signal Strength Indication (RSSI) localization algorithms in real-world situations. We presented two prospective systems, discussed them, and presented specific assessments and tests. These systems were put to the test in diverse contexts (e.g., indoor, outdoor, in water...). The findings showed the localization capability, but because of the low-cost antenna we employed, this method is only practical up to a distance of roughly 150 meters. Consequently, depending on the use-case, this method may or may not be advantageous. An estimation algorithm that enhances the performance of the AoA technique was implemented on an edge device. Another approach was also considered. Radar sensors have shown to be durable in inclement weather and bad lighting conditions. Frequency Modulated Continuous Wave (FMCW) radars are the most frequently employed among the several sorts of radar technologies for these kinds of applications. Actually, this is because they are low-cost and can simultaneously provide range and Doppler data. In comparison to pulse and Ultra Wide Band (UWB) radar sensors, they also need a lower sample rate and a lower peak to average ratio. The system employs a cutting-edge surveillance method based on widely available FMCW radar technology. The data processing approach is built on an ad hoc-chain of different blocks that transforms data, extract features, and make a classification decision before cancelling clutters and leakage using a frame subtraction technique, applying DL algorithms to Range-Doppler (RD) maps, and adding a peak to cluster assignment step before tracking targets. In conclusion, the FMCW radar and DL technique for the RD maps performed well together for indoor use-cases. The aforementioned tests used an edge device and Infineon Technologies' Position2Go FMCW radar tool-set

    Radars for Autonomous Driving: A Review of Deep Learning Methods and Challenges

    Full text link
    Radar is a key component of the suite of perception sensors used for safe and reliable navigation of autonomous vehicles. Its unique capabilities include high-resolution velocity imaging, detection of agents in occlusion and over long ranges, and robust performance in adverse weather conditions. However, the usage of radar data presents some challenges: it is characterized by low resolution, sparsity, clutter, high uncertainty, and lack of good datasets. These challenges have limited radar deep learning research. As a result, current radar models are often influenced by lidar and vision models, which are focused on optical features that are relatively weak in radar data, thus resulting in under-utilization of radar's capabilities and diminishing its contribution to autonomous perception. This review seeks to encourage further deep learning research on autonomous radar data by 1) identifying key research themes, and 2) offering a comprehensive overview of current opportunities and challenges in the field. Topics covered include early and late fusion, occupancy flow estimation, uncertainty modeling, and multipath detection. The paper also discusses radar fundamentals and data representation, presents a curated list of recent radar datasets, and reviews state-of-the-art lidar and vision models relevant for radar research. For a summary of the paper and more results, visit the website: autonomous-radars.github.io

    Spectro-temporal modelling for human activity recognition using a radar sensor network

    Get PDF

    A Review of Indoor Millimeter Wave Device-based Localization and Device-free Sensing Technologies and Applications

    Full text link
    The commercial availability of low-cost millimeter wave (mmWave) communication and radar devices is starting to improve the penetration of such technologies in consumer markets, paving the way for large-scale and dense deployments in fifth-generation (5G)-and-beyond as well as 6G networks. At the same time, pervasive mmWave access will enable device localization and device-free sensing with unprecedented accuracy, especially with respect to sub-6 GHz commercial-grade devices. This paper surveys the state of the art in device-based localization and device-free sensing using mmWave communication and radar devices, with a focus on indoor deployments. We first overview key concepts about mmWave signal propagation and system design. Then, we provide a detailed account of approaches and algorithms for localization and sensing enabled by mmWaves. We consider several dimensions in our analysis, including the main objectives, techniques, and performance of each work, whether each research reached some degree of implementation, and which hardware platforms were used for this purpose. We conclude by discussing that better algorithms for consumer-grade devices, data fusion methods for dense deployments, as well as an educated application of machine learning methods are promising, relevant and timely research directions.Comment: 43 pages, 13 figures. Accepted in IEEE Communications Surveys & Tutorials (IEEE COMST

    High Precision Human Detection and Tracking using Millimetre-Wave Radars

    Get PDF
    corecore