20,449 research outputs found

    Fall detection using a Gaussian distribution of clustered knowledge, augmented radial basis neural-network, and multilayer perceptron

    Full text link
    The rapidly increasing population of elderly people has posed a big challenge to research in fall prevention and detection. Substantial amounts of injuries, disabilities, traumas and deaths among elderly people due to falls have been reported worldwide. There is therefore a need for a reliable, simple, and affordable automatic fall detection system. This paper proposes a reliable fall detection algorithm using minimal information from a single waist worn wireless tri-axial accelerometer. The method proposed is to approach fall detection using digital signal processing and neural networks. This method includes the application of Discrete Wavelet Transform (DWT), Regrouping Particle Swarm Optimization (RegPSO), a proposed method called Gaussian Distribution of Clustered Knowledge (GCK), and an Ensemble of Classifiers using two different classifiers: Multilayer Perceptron Neural Network (MLP) and Augmented Radial Basis Neural Networks (ARBF). The proposed method has been tested on 8 healthy individuals in a home environment and yields promising result of up to 100% sensitivity on ingroup, 97.65% sensitivity on outgroup, and 99.56% specificity on Activities of Daily Living (ADL) data. © 2011 IEEE

    A Vision-based approach to fall detection for elderly patients receiving home-based care

    Get PDF
    Thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science in Information Technology (MSIT) at Strathmore UniversityFalls present one of the unintentional accidents for people in the world. The adverse effects of a fall vary with the nature of the fall and the impact with the ground or object. Essentially, falls rarely occur in the daily activities of healthy individuals. The occurrence results in fatal or non-fatal falls. However, the falls are consequential for the elderly people since they result in future related problems or death. As such, elderly patients require additional attention in the case of fall events. Therefore, to mitigate the effect of a fall on an elderly patient, there must be the provision of a fast response mechanism. Response time to medical emergencies plays a key role in patient survival and recovery. As such, medical personnel strive to reduce the response time. Proper and immediate notification of an emergency aids in reducing the response time. In order to substantially reduce the negative effect of the fall or increase the survival chances, patients ought to receive fast medical response. Therefore, the need of a fast and proper notification method that aims at providing relevant information in regards to the nature of emergency of the patient. As such, proper monitoring leads to a reduced response time. Arguably, elderly patients require urgent medical care in case of a fall. This research work proposes a multi-person fall detection system, which implements a vision-based approach for fall detection leveraging on region-based convolution neural network. A fixed camera serves as the input device to capture images of people. The system analyses the image to identify the posture and orientation of the people present in the image. Based on the provided image, the system then classifies the occurrence as a fall or non-fall using the developed model. If it identifies a fall, an alert is then sent to a concerned party. The system achieves a mean average precision of 0.8 in fall detection. Further, the system detects a fall in an image in 3.8 seconds thus improving the response time of the medical personnel to aid in curbing the negative effects of a fall on a patient

    A novel monitoring system for fall detection in older people

    Get PDF
    Indexación: Scopus.This work was supported in part by CORFO - CENS 16CTTS-66390 through the National Center on Health Information Systems, in part by the National Commission for Scientific and Technological Research (CONICYT) through the Program STIC-AMSUD 17STIC-03: ‘‘MONITORing for ehealth," FONDEF ID16I10449 ‘‘Sistema inteligente para la gestión y análisis de la dotación de camas en la red asistencial del sector público’’, and in part by MEC80170097 ‘‘Red de colaboración científica entre universidades nacionales e internacionales para la estructuración del doctorado y magister en informática médica en la Universidad de Valparaíso’’. The work of V. H. C. De Albuquerque was supported by the Brazilian National Council for Research and Development (CNPq), under Grant 304315/2017-6.Each year, more than 30% of people over 65 years-old suffer some fall. Unfortunately, this can generate physical and psychological damage, especially if they live alone and they are unable to get help. In this field, several studies have been performed aiming to alert potential falls of the older people by using different types of sensors and algorithms. In this paper, we present a novel non-invasive monitoring system for fall detection in older people who live alone. Our proposal is using very-low-resolution thermal sensors for classifying a fall and then alerting to the care staff. Also, we analyze the performance of three recurrent neural networks for fall detections: Long short-term memory (LSTM), gated recurrent unit, and Bi-LSTM. As many learning algorithms, we have performed a training phase using different test subjects. After several tests, we can observe that the Bi-LSTM approach overcome the others techniques reaching a 93% of accuracy in fall detection. We believe that the bidirectional way of the Bi-LSTM algorithm gives excellent results because the use of their data is influenced by prior and new information, which compares to LSTM and GRU. Information obtained using this system did not compromise the user's privacy, which constitutes an additional advantage of this alternative. © 2013 IEEE.https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=842305

    Wearable Fall Detector Using Recurrent Neural Networks

    Get PDF
    Falls have become a relevant public health issue due to their high prevalence and negative effects in elderly people. Wearable fall detector devices allow the implementation of continuous and ubiquitous monitoring systems. The effectiveness for analyzing temporal signals with low energy consumption is one of the most relevant characteristics of these devices. Recurrent neural networks (RNNs) have demonstrated a great accuracy in some problems that require analyzing sequential inputs. However, getting appropriate response times in low power microcontrollers remains a difficult task due to their limited hardware resources. This work shows a feasibility study about using RNN-based deep learning models to detect both falls and falls’ risks in real time using accelerometer signals. The effectiveness of four different architectures was analyzed using the SisFall dataset at different frequencies. The resulting models were integrated into two different embedded systems to analyze the execution times and changes in the model effectiveness. Finally, a study of power consumption was carried out. A sensitivity of 88.2% and a specificity of 96.4% was obtained. The simplest models reached inference times lower than 34 ms, which implies the capability to detect fall events in real-time with high energy efficiency. This suggests that RNN models provide an effective method that can be implemented in low power microcontrollers for the creation of autonomous wearable fall detection systems in real-time

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    Detecting Irregular Patterns in IoT Streaming Data for Fall Detection

    Full text link
    Detecting patterns in real time streaming data has been an interesting and challenging data analytics problem. With the proliferation of a variety of sensor devices, real-time analytics of data from the Internet of Things (IoT) to learn regular and irregular patterns has become an important machine learning problem to enable predictive analytics for automated notification and decision support. In this work, we address the problem of learning an irregular human activity pattern, fall, from streaming IoT data from wearable sensors. We present a deep neural network model for detecting fall based on accelerometer data giving 98.75 percent accuracy using an online physical activity monitoring dataset called "MobiAct", which was published by Vavoulas et al. The initial model was developed using IBM Watson studio and then later transferred and deployed on IBM Cloud with the streaming analytics service supported by IBM Streams for monitoring real-time IoT data. We also present the systems architecture of the real-time fall detection framework that we intend to use with mbientlabs wearable health monitoring sensors for real time patient monitoring at retirement homes or rehabilitation clinics.Comment: 7 page
    • …
    corecore