5 research outputs found

    ConSORT: Context- and Flow-Sensitive Ownership Refinement Types for Imperative Programs

    Full text link
    We present ConSORT, a type system for safety verification in the presence of mutability and aliasing. Mutability requires strong updates to model changing invariants during program execution, but aliasing between pointers makes it difficult to determine which invariants must be updated in response to mutation. Our type system addresses this difficulty with a novel combination of refinement types and fractional ownership types. Fractional ownership types provide flow-sensitive and precise aliasing information for reference variables. ConSORT interprets this ownership information to soundly handle strong updates of potentially aliased references. We have proved ConSORT sound and implemented a prototype, fully automated inference tool. We evaluated our tool and found it verifies non-trivial programs including data structure implementations

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 29th European Symposium on Programming, ESOP 2020, which was planned to take place in Dublin, Ireland, in April 2020, as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The actual ETAPS 2020 meeting was postponed due to the Corona pandemic. The papers deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Faithful Translations between Polyvariant Flows and Polymorphic Types

    No full text
    Recent work has shown equivalences between various type systems and flow logics. Ideally, the translations upon which such equivalences are based should be faithful in the sense that information is not lost in roundtrip translations from flows to types and back or from types to flows and back. Building on the work of Nielson & Nielson and of Palsberg & Pavlopoulou, we present the first faithful translations between a class of finitary polyvariant flow analyses and a type system supporting polymorphism in the form of intersection and union types. Additionally, our flow/type correspondence solves several open problems posed by Palsberg & Pavlopoulou: (1) it expresses call-string based polyvariance (such as k-CFA) as well as argument based polyvariance; (2) it enjoys a subject reduction property for flows as well as for types; and (3) it supports a flow-oriented perspective rather than a type-oriented one.

    Faithful Translations between Polyvariant Flows and Polymorphic Types

    No full text
    Recent work has shown equivalences between various type systems and flow logics. Ideally, the translations upon which such equivalences are based should be faithful in the sense that information is not lost in round-trip translations from flows to types and back or from types to flows and back. Building on the work of Nielson & Nielson and of Palsberg & Pavlopoulou, we present the first faithful translations between a class of finitary polyvariant flow analyses and a type system supporting polymorphism in the form of intersection and union types. Additionally, our flow/type correspondence solves several open problems posed by Palsberg & Pavlopoulou: (1) it expresses callstring based polyvariance (such as k-CFA) as well as argument based polyvariance; (2) it enjoys a subject reduction property for flows as well as for types; and (3) it supports a flow-oriented perspective rather than a type-oriented one. 2
    corecore