220 research outputs found

    Demographic Fairness in Multimodal Biometrics: A Comparative Analysis on Audio-Visual Speaker Recognition Systems

    Get PDF
    In urban scenarios, biometric recognition technologies are being increasingly adopted to empower citizens with a secure and usable access to personalized services. Given the challenging environmental scenarios, combining evidence from multiple biometrics at a certain step of the recognition pipeline has been often proved to increase the performance of the biometric-enabled recognition system. Despite the increasing accuracy achieved so far, it still remains under-explored how the adopted biometric fusion policy impacts on the quality of the decisions made by the biometric system, depending on the demographic characteristics of the citizen under consideration. In this paper, we investigate the extent to which state-of-the-art multimodal recognition systems based on facial and vocal biometrics are susceptible to unfairness towards legally-protected groups of individuals, characterized by a common sensitive attribute. Specifically, we present a comparative analysis of the performance across groups for two deep learning architectures tailored for facial and vocal recognition, under seven fusion policies that cover different pipeline steps (feature, model, score and decision). Experiments show that, compared to the unimodal systems alone and the other fusion policies, the multimodal system obtained via a fusion at the model step leads to the highest overall accuracy and the lowest disparity across groups

    Machine Learning Models for Educational Platforms

    Get PDF
    Scaling up education online and onlife is presenting numerous key challenges, such as hardly manageable classes, overwhelming content alternatives, and academic dishonesty while interacting remotely. However, thanks to the wider availability of learning-related data and increasingly higher performance computing, Artificial Intelligence has the potential to turn such challenges into an unparalleled opportunity. One of its sub-fields, namely Machine Learning, is enabling machines to receive data and learn for themselves, without being programmed with rules. Bringing this intelligent support to education at large scale has a number of advantages, such as avoiding manual error-prone tasks and reducing the chance that learners do any misconduct. Planning, collecting, developing, and predicting become essential steps to make it concrete into real-world education. This thesis deals with the design, implementation, and evaluation of Machine Learning models in the context of online educational platforms deployed at large scale. Constructing and assessing the performance of intelligent models is a crucial step towards increasing reliability and convenience of such an educational medium. The contributions result in large data sets and high-performing models that capitalize on Natural Language Processing, Human Behavior Mining, and Machine Perception. The model decisions aim to support stakeholders over the instructional pipeline, specifically on content categorization, content recommendation, learners’ identity verification, and learners’ sentiment analysis. Past research in this field often relied on statistical processes hardly applicable at large scale. Through our studies, we explore opportunities and challenges introduced by Machine Learning for the above goals, a relevant and timely topic in literature. Supported by extensive experiments, our work reveals a clear opportunity in combining human and machine sensing for researchers interested in online education. Our findings illustrate the feasibility of designing and assessing Machine Learning models for categorization, recommendation, authentication, and sentiment prediction in this research area. Our results provide guidelines on model motivation, data collection, model design, and analysis techniques concerning the above applicative scenarios. Researchers can use our findings to improve data collection on educational platforms, to reduce bias in data and models, to increase model effectiveness, and to increase the reliability of their models, among others. We expect that this thesis can support the adoption of Machine Learning models in educational platforms even more, strengthening the role of data as a precious asset. The thesis outputs are publicly available at https://www.mirkomarras.com

    Emerging privacy challenges and approaches in CAV systems

    Get PDF
    The growth of Internet-connected devices, Internet-enabled services and Internet of Things systems continues at a rapid pace, and their application to transport systems is heralded as game-changing. Numerous developing CAV (Connected and Autonomous Vehicle) functions, such as traffic planning, optimisation, management, safety-critical and cooperative autonomous driving applications, rely on data from various sources. The efficacy of these functions is highly dependent on the dimensionality, amount and accuracy of the data being shared. It holds, in general, that the greater the amount of data available, the greater the efficacy of the function. However, much of this data is privacy-sensitive, including personal, commercial and research data. Location data and its correlation with identity and temporal data can help infer other personal information, such as home/work locations, age, job, behavioural features, habits, social relationships. This work categorises the emerging privacy challenges and solutions for CAV systems and identifies the knowledge gap for future research, which will minimise and mitigate privacy concerns without hampering the efficacy of the functions

    EU law and emotion data

    Full text link
    This article sheds light on legal implications and challenges surrounding emotion data processing within the EU's legal framework. Despite the sensitive nature of emotion data, the GDPR does not categorize it as special data, resulting in a lack of comprehensive protection. The article also discusses the nuances of different approaches to affective computing and their relevance to the processing of special data under the GDPR. Moreover, it points to potential tensions with data protection principles, such as fairness and accuracy. Our article also highlights some of the consequences, including harm, that processing of emotion data may have for individuals concerned. Additionally, we discuss how the AI Act proposal intends to regulate affective computing. Finally, the article outlines the new obligations and transparency requirements introduced by the DSA for online platforms utilizing emotion data. Our article aims at raising awareness among the affective computing community about the applicable legal requirements when developing AC systems intended for the EU market, or when working with study participants located in the EU. We also stress the importance of protecting the fundamental rights of individuals even when the law struggles to keep up with technological developments that capture sensitive emotion data.Comment: 8 pages, 2023 11th International Conference on Affective Computing and Intelligent Interaction (ACII

    Secure and robust machine learning for healthcare: A survey

    Get PDF
    Recent years have witnessed widespread adoption of machine learning (ML)/deep learning (DL) techniques due to their superior performance for a variety of healthcare applications ranging from the prediction of cardiac arrest from one-dimensional heart signals to computer-aided diagnosis (CADx) using multi-dimensional medical images. Notwithstanding the impressive performance of ML/DL, there are still lingering doubts regarding the robustness of ML/DL in healthcare settings (which is traditionally considered quite challenging due to the myriad security and privacy issues involved), especially in light of recent results that have shown that ML/DL are vulnerable to adversarial attacks. In this paper, we present an overview of various application areas in healthcare that leverage such techniques from security and privacy point of view and present associated challenges. In addition, we present potential methods to ensure secure and privacy-preserving ML for healthcare applications. Finally, we provide insight into the current research challenges and promising directions for future research

    Non-Intrusive Continuous User Authentication for Mobile Devices

    Get PDF
    The modern mobile device has become an everyday tool for users and business. Technological advancements in the device itself and the networks that connect them have enabled a range of services and data access which have introduced a subsequent increased security risk. Given the latter, the security requirements need to be re-evaluated and authentication is a key countermeasure in this regard. However, it has traditionally been poorly served and would benefit from research to better understand how authentication can be provided to establish sufficient trust. This thesis investigates the security requirements of mobile devices through literature as well as acquiring the user’s perspectives. Given the findings it proposes biometric authentication as a means to establish a more trustworthy approach to user authentication and considers the applicability and topology considerations. Given the different risk and requirements, an authentication framework that offers transparent and continuous is developed. A thorough end-user evaluation of the model demonstrates many positive aspects of transparent authentication. The technical evaluation however, does raise a number of operational challenges that are difficult to achieve in a practical deployment. The research continues to model and simulate the operation of the framework in an controlled environment seeking to identify and correlate the key attributes of the system. Based upon these results and a number of novel adaptations are proposed to overcome the operational challenges and improve upon the impostor detection rate. The new approach to the framework simplifies the approach significantly and improves upon the security of the system, whilst maintaining an acceptable level of usability

    Harnessing the Power of Generative Models for Mobile Continuous and Implicit Authentication

    Get PDF
    Authenticating a user's identity lies at the heart of securing any information system. A trade off exists currently between user experience and the level of security the system abides by. Using Continuous and Implicit Authentication a user's identity can be verified without any active participation, hence increasing the level of security, given the continuous verification aspect, as well as the user experience, given its implicit nature. This thesis studies using mobile devices inertial sensors data to identify unique movements and patterns that identify the owner of the device at all times. We implement, and evaluate approaches proposed in related works as well as novel approaches based on a variety of machine learning models, specifically a new kind of Auto Encoder (AE) named Variational Auto Encoder (VAE), relating to the generative models family. We evaluate numerous machine learning models for the anomaly detection or outlier detection case of spotting a malicious user, or an unauthorised entity currently using the smartphone system. We evaluate the results under conditions similar to other works as well as under conditions typically observed in real-world applications. We find that the shallow VAE is the best performer semi-supervised anomaly detector in our evaluations and hence the most suitable for the design proposed. The thesis concludes with recommendations for the enhancement of the system and the research body dedicated to the domain of Continuous and Implicit Authentication for mobile security
    • …
    corecore