224 research outputs found

    Energy-Efficient Resource Allocation for Device-to-Device Underlay Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks is expected to bring significant benefits for utilizing resources, improving user throughput and extending battery life of user equipments. However, the allocation of radio and power resources to D2D communication needs elaborate coordination, as D2D communication can cause interference to cellular communication. In this paper, we study joint channel and power allocation to improve the energy efficiency of user equipments. To solve the problem efficiently, we introduce an iterative combinatorial auction algorithm, where the D2D users are considered as bidders that compete for channel resources, and the cellular network is treated as the auctioneer. We also analyze important properties of D2D underlay communication, and present numerical simulations to verify the proposed algorithm.Comment: IEEE Transactions on Wireless Communication

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Non-convex Optimization for Resource Allocation in Wireless Device-to-Device Communications

    Get PDF
    Device-to-device (D2D) communication is considered one of the key frameworks to provide suitable solutions for the exponentially increasing data tra c in mobile telecommunications. In this PhD Thesis, we focus on the resource allocation for underlay D2D communications which often results in a non-convex optimization problem that is computationally demanding. We have also reviewed many of the works on D2D underlay communications and identi ed some of the limitations that were not handled previously, which has motivated our works in this Thesis. Our rst works focus on the joint power allocation and channel assignment problem in the D2D underlay communication scenario for a unicast single-input and single-output (SISO) cellular network in either uplink or downlink spectrums. These works also consider several degrees of uncertainty in the channel state information (CSI), and propose suitable measures to guarantee the quality of service (QoS) and reliability under those conditions. Moreover, we also present a few algorithms that can be used to jointly assign uplink and downlink spectrum to D2D pairs. We also provide methods to decentralize those algorithms with convergence guarantees and analyze their computational complexity. We also consider both cases with no interference among D2D pairs and cases with interference among D2D pairs. Additionally, we propose the formulation of an optimization objective function that combines the network rate with a penalty function that penalizes unfair channel allocations where most of the channels are assigned to only a few D2D pairs. The next contributions of this Thesis focus on extending the previous works to cellular networks with multiple-input and multiple-output (MIMO) capabilities and networks with D2D multicast groups. We also present several methods to accommodate various degrees of uncertainty in the CSI and also guarantee di erent measures of QoS and reliability. All our algorithms are evaluated extensively through extensive numerical experiments using the Matlab simulation environment. All of these results show favorable performance, as compared to the existing state-of-the-art alternatives.publishedVersio
    corecore