72 research outputs found

    Fairness in Multiuser Systems with Polymatroid Capacity Region

    Full text link
    For a wide class of multi-user systems, a subset of capacity region which includes the corner points and the sum-capacity facet has a special structure known as polymatroid. Multiaccess channels with fixed input distributions and multiple-antenna broadcast channels are examples of such systems. Any interior point of the sum-capacity facet can be achieved by time-sharing among corner points or by an alternative method known as rate-splitting. The main purpose of this paper is to find a point on the sum-capacity facet which satisfies a notion of fairness among active users. This problem is addressed in two cases: (i) where the complexity of achieving interior points is not feasible, and (ii) where the complexity of achieving interior points is feasible. For the first case, the corner point for which the minimum rate of the active users is maximized (max-min corner point) is desired for signaling. A simple greedy algorithm is introduced to find the optimum max-min corner point. For the second case, the polymatroid properties are exploited to locate a rate-vector on the sum-capacity facet which is optimally fair in the sense that the minimum rate among all users is maximized (max-min rate). In the case that the rate of some users can not increase further (attain the max-min value), the algorithm recursively maximizes the minimum rate among the rest of the users. It is shown that the problems of deriving the time-sharing coefficients or rate-spitting scheme can be solved by decomposing the problem to some lower-dimensional subproblems. In addition, a fast algorithm to compute the time-sharing coefficients to attain a general point on the sum-capacity facet is proposed.Comment: Submitted To IEEE Transactions on Information Theory, June 200

    Subcarrier and Power Allocation for LDS-OFDM System

    Get PDF
    Low Density Signature-Orthogonal Frequency Division Multiplexing (LDS-OFDM) has been introduced recently as an efficient multiple access technique. In this paper, we focus on the subcarrier and power allocation scheme for uplink LDS-OFDM system. Since the resource allocation problem is not convex due to the discrete nature of subcarrier allocation, the complexity of finding the optimal solutions is extremely high. We propose a heuristic subcarrier and power allocation algorithm to maximize the weighted sum-rate. The simulation results show that the proposed algorithm can significantly increase the spectral efficiency of the system. Furthermore, it is shown that LDS-OFDM system can achieve an outage probability much less than that for OFDMA system

    Communication over MIMO Multi-User Systems: Signalling and Fairness

    Get PDF
    Employment of the multiple-antenna transmitters/receivers in communication systems is known as a promising solution to provide high-data-rate wireless links. In the multi-user environments, the problems of signaling and fairness for multi-antenna systems have emerged as challenging problems. This dissertation deals with these problems in several multi-antenna multi-user scenarios. In part one, a simple signaling method for the multi-antenna broadcast channels is proposed. This method reduces the MIMO broadcast system to a set of parallel channels. The proposed scheme has several desirable features in terms of: (i) accommodating users with different number of receive antennas, (ii) exploiting multi-user diversity, and (iii) requiring low feedback rate. The simulation results and analytical evaluations indicate that the achieved sum-rate is close to the sum-capacity of the underlying broadcast channel. In part two, for multiple-antenna systems with two transmitters and two receivers, a new non-cooperative scenario of data communication is studied in which each receiver receives data from both transmitters. For such a scenario, a signaling scheme is proposed which decomposes the system into two broadcast or two multi-access sub-channels. Using the decomposition scheme, it is shown that this signaling scenario outperforms the other known non-cooperative schemes in terms of the achievable multiplexing gain. In particular for some special cases, the achieved multiplexing gain is the same as the multiplexing gain of the system, where the full cooperation is provided between the transmitters and/or between the receivers. Part three investigates the problem of fairness for a class of systems for which a subset of the capacity region, which includes the sum-capacity facets, forms a polymatroid structure. The main purpose is to find a point on the sum-capacity facet which satisfies a notion of fairness among active users. This problem is addressed in the cases where the complexity of achieving interior points is not feasible, and where the complexity of achieving interior points is feasible. In part four, KK-user memoryless interference channels are considered; where each receiver sequentially decodes the data of a subset of transmitters before it decodes the data of the designated transmitter. A greedy algorithm is developed to find the users which are decoded at each receiver and the corresponding decoding order such that the minimum rate of the users is maximized. It is proven that the proposed algorithm is optimal. The results of the parts three and four are presented for general channels which include the multiple-antenna systems as special cases

    Radio resource allocation for multicarrier-low density spreading multiple access

    Get PDF
    Multicarrier-low density spreading multiple access (MC-LDSMA) is a promising multiple access technique that enables near optimum multiuser detection. In MC-LDSMA, each user’s symbol spread on a small set of subcarriers, and each subcarrier is shared by multiple users. The unique structure of MC-LDSMA makes the radio resource allocation more challenging comparing to some well-known multiple access techniques. In this paper, we study the radio resource allocation for single-cell MC-LDSMA system. Firstly, we consider the single-user case, and derive the optimal power allocation and subcarriers partitioning schemes. Then, by capitalizing on the optimal power allocation of the Gaussian multiple access channel, we provide an optimal solution for MC-LDSMA that maximizes the users’ weighted sum-rate under relaxed constraints. Due to the prohibitive complexity of the optimal solution, suboptimal algorithms are proposed based on the guidelines inferred by the optimal solution. The performance of the proposed algorithms and the effect of subcarrier loading and spreading are evaluated through Monte Carlo simulations. Numerical results show that the proposed algorithms significantly outperform conventional static resource allocation, and MC-LDSMA can improve the system performance in terms of spectral efficiency and fairness in comparison with OFDMA

    Multiuser Switched Diversity Scheduling Schemes

    Full text link
    Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions.Comment: Accepted at IEEE Transactions on Communications, to appear 2012, funded by NPRP grant 08-577-2-241 from QNR
    • …
    corecore