2,559 research outputs found

    Optimal scheduling and fair servicepolicy for STDMA in underwater networks with acoustic communications

    Get PDF
    In this work, a multi-hop string network with a single sink node is analyzed. A periodic optimal scheduling for TDMA operation that considers the characteristic long propagation delay of the underwater acoustic channel is presented. This planning of transmissions is obtained with the help of a new geometrical method based on a 2D lattice in the space-time domain. In order to evaluate the performance of this optimal scheduling, two service policies have been compared: FIFO and Round-Robin. Simulation results, including achievable throughput, packet delay, and queue length, are shown. The network fairness has also been quantified with the Gini index

    QUANTIFYING FAIRNESS IN QUEUING SYSTEMS: PRINCIPLES, APPROACHES, AND APPLICABILITY

    Get PDF
    In this article we discuss fairness in queues, view it in the context of social justice at large, and survey the recently published research work and publications dealing with the issue of measuring fairness of queues. The emphasis is placed on the underlying principles of the different measurement approaches, on reviewing their methodology, and on examining their applicability and intuitive appeal. Some quantitative results are also presented. The article has three major parts (sections) and a short concluding discussion. In the first part we discuss fairness in queues and its importance in the broader context of the prevailing conception of social justice at large, and the distinction between fairness of the queue and fairness at large is illuminated. The second part is dedicated to explaining and discussing three main properties expected of a fairness measure: conformity to the general concept of social justice, granularity, and intuitive appeal and rationality. The third part reviews the fairness of the queue evaluating and measuring approaches proposed and studied in recent years. We describe the underlying principles of the different approaches, present some of their results, and review them in context of the three main properties expected from a measure. The short discussion that follows centers on future research issue

    Delay Considerations for Opportunistic Scheduling in Broadcast Fading Channels

    Get PDF
    We consider a single-antenna broadcast block fading channel with n users where the transmission is packetbased. We define the (packet) delay as the minimum number of channel uses that guarantees all n users successfully receive m packets. This is a more stringent notion of delay than average delay and is the worst case (access) delay among the users. A delay optimal scheduling scheme, such as round-robin, achieves the delay of mn. For the opportunistic scheduling (which is throughput optimal) where the transmitter sends the packet to the user with the best channel conditions at each channel use, we derive the mean and variance of the delay for any m and n. For large n and in a homogeneous network, it is proved that the expected delay in receiving one packet by all the receivers scales as n log n, as opposed to n for the round-robin scheduling. We also show that when m grows faster than (log n)^r, for some r > 1, then the delay scales as mn. This roughly determines the timescale required for the system to behave fairly in a homogeneous network. We then propose a scheme to significantly reduce the delay at the expense of a small throughput hit. We further look into the advantage of multiple transmit antennas on the delay. For a system with M antennas in the transmitter where at each channel use packets are sent to M different users, we obtain the expected delay in receiving one packet by all the users

    Metascheduling of HPC Jobs in Day-Ahead Electricity Markets

    Full text link
    High performance grid computing is a key enabler of large scale collaborative computational science. With the promise of exascale computing, high performance grid systems are expected to incur electricity bills that grow super-linearly over time. In order to achieve cost effectiveness in these systems, it is essential for the scheduling algorithms to exploit electricity price variations, both in space and time, that are prevalent in the dynamic electricity price markets. In this paper, we present a metascheduling algorithm to optimize the placement of jobs in a compute grid which consumes electricity from the day-ahead wholesale market. We formulate the scheduling problem as a Minimum Cost Maximum Flow problem and leverage queue waiting time and electricity price predictions to accurately estimate the cost of job execution at a system. Using trace based simulation with real and synthetic workload traces, and real electricity price data sets, we demonstrate our approach on two currently operational grids, XSEDE and NorduGrid. Our experimental setup collectively constitute more than 433K processors spread across 58 compute systems in 17 geographically distributed locations. Experiments show that our approach simultaneously optimizes the total electricity cost and the average response time of the grid, without being unfair to users of the local batch systems.Comment: Appears in IEEE Transactions on Parallel and Distributed System

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin
    • 

    corecore