2,165 research outputs found

    Advancing Subgroup Fairness via Sleeping Experts

    Get PDF
    We study methods for improving fairness to subgroups in settings with overlapping populations and sequential predictions. Classical notions of fairness focus on the balance of some property across different populations. However, in many applications the goal of the different groups is not to be predicted equally but rather to be predicted well. We demonstrate that the task of satisfying this guarantee for multiple overlapping groups is not straightforward and show that for the simple objective of unweighted average of false negative and false positive rate, satisfying this for overlapping populations can be statistically impossible even when we are provided predictors that perform well separately on each subgroup. On the positive side, we show that when individuals are equally important to the different groups they belong to, this goal is achievable; to do so, we draw a connection to the sleeping experts literature in online learning. Motivated by the one-sided feedback in natural settings of interest, we extend our results to such a feedback model. We also provide a game-theoretic interpretation of our results, examining the incentives of participants to join the system and to provide the system full information about predictors they may possess. We end with several interesting open problems concerning the strength of guarantees that can be achieved in a computationally efficient manner

    Fairness Behind a Veil of Ignorance: A Welfare Analysis for Automated Decision Making

    Get PDF
    We draw attention to an important, yet largely overlooked aspect of evaluating fairness for automated decision making systems---namely risk and welfare considerations. Our proposed family of measures corresponds to the long-established formulations of cardinal social welfare in economics, and is justified by the Rawlsian conception of fairness behind a veil of ignorance. The convex formulation of our welfare-based measures of fairness allows us to integrate them as a constraint into any convex loss minimization pipeline. Our empirical analysis reveals interesting trade-offs between our proposal and (a) prediction accuracy, (b) group discrimination, and (c) Dwork et al.'s notion of individual fairness. Furthermore and perhaps most importantly, our work provides both heuristic justification and empirical evidence suggesting that a lower-bound on our measures often leads to bounded inequality in algorithmic outcomes; hence presenting the first computationally feasible mechanism for bounding individual-level inequality.Comment: Conference: Thirty-second Conference on Neural Information Processing Systems (NIPS 2018

    Learning Fair Naive Bayes Classifiers by Discovering and Eliminating Discrimination Patterns

    Full text link
    As machine learning is increasingly used to make real-world decisions, recent research efforts aim to define and ensure fairness in algorithmic decision making. Existing methods often assume a fixed set of observable features to define individuals, but lack a discussion of certain features not being observed at test time. In this paper, we study fairness of naive Bayes classifiers, which allow partial observations. In particular, we introduce the notion of a discrimination pattern, which refers to an individual receiving different classifications depending on whether some sensitive attributes were observed. Then a model is considered fair if it has no such pattern. We propose an algorithm to discover and mine for discrimination patterns in a naive Bayes classifier, and show how to learn maximum likelihood parameters subject to these fairness constraints. Our approach iteratively discovers and eliminates discrimination patterns until a fair model is learned. An empirical evaluation on three real-world datasets demonstrates that we can remove exponentially many discrimination patterns by only adding a small fraction of them as constraints
    • …
    corecore