12 research outputs found

    Master index volumes 31–40

    Get PDF

    Theory of traces

    Get PDF
    AbstractThe theory of traces, originated by A. Mazurkiewicz in 1977, is an attempt to provide a mathematical description of the behavior of concurrent systems. Its aim is to reconcile the sequential nature of observations of the system behavior on the one hand and the nonsequential nature of causality between the actions of the system on the other hand.One can see the theory of traces to be rooted in formal string language theory with the notion of partial commutativity playing the central role. Alternatively one can see the theory of traces to be rooted in the theory of labeled acyclic directed graphs (or even in the theory of labeled partial orders).This paper attempts to present a major portion of the theory of traces in a unified way. However, it is not a survey in the sense that a number of new notions are introduced and a number of new results are proved. Although traditionally most of the development in the theory of traces follows the string-language-theoretic line, we try to demonstrate to the reader that the graph-theoretic point of view may be more appropriate.The paper essentially consists of two parts. The first one (Sections 1 through 4) is concerned with the basic theory of traces. The second one (Section 5) presents applications of the theory of traces to the theory of the behavior of concurrent systems, where the basic system model we have chosen is the condition/event system introduced by C.A. Petri

    Timed data flow diagrams

    Get PDF
    Traditional Data Flow Diagrams (DFD\u27s) are the cornerstone of the software development methodology known as Structured Analysis (SA), and they are probably the most widely used specification technique in industry today. DFD\u27s are popular because of their graphical representation and their hierarchical structure. Thus, they are well-suited for users with non-technical backgrounds and are commonly used to depict the static structure of information flow in a system. Numerous attempts to formalize DFD\u27s have appeared in the technical literature. We focus on the Formalized Data Flow Diagrams (FDFD\u27s) developed by Coleman, Wahls, Baker, and Leavens;This dissertation analyzes and extends FDFD\u27s with respect to their usefulness in specifying the qualitative and quantitative properties of real systems. Prior to this dissertation, there existed no well-founded knowledge about the computational power of FDFD\u27s nor any formal model in FDFD\u27s of the timing behavior of real systems;The dissertation is organized as a collection of five independent papers. Briefly, the main results of each paper are as follows: (i) Reduced FDFD\u27s are Turing equivalent. (ii) Stores, persistent flows, tests for empty flows, and infinite domains are not essential for FDFD\u27s. (iii) Subclasses of FDFD\u27s are equivalent to known subclasses of FIFO Petri Nets, immediately furnishing the decidability results for subclasses of FIFO Petri Nets to the corresponding subclasses of FDFD\u27s. (iv) A general stochastic model of time for FDFD\u27s (called Timed Data Flow Diagrams--TDFD\u27s) is defined, allowing not only a description of the relative likelihoods of various execution times, but also descriptions of the possible joint firing behavior of transitions. (v) An aggregation principle can be used for an efficient stochastic analysis of periodic TDFD\u27s with Markovian transition times;The results in this dissertation provide a firm theoretical foundation for further advances in Computer Science and Statistics, leading to practical and expressive tools for the specification and analysis of real systems

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This book is Open Access under a CC BY licence. The LNCS 11427 and 11428 proceedings set constitutes the proceedings of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019. The total of 42 full and 8 short tool demo papers presented in these volumes was carefully reviewed and selected from 164 submissions. The papers are organized in topical sections as follows: Part I: SAT and SMT, SAT solving and theorem proving; verification and analysis; model checking; tool demo; and machine learning. Part II: concurrent and distributed systems; monitoring and runtime verification; hybrid and stochastic systems; synthesis; symbolic verification; and safety and fault-tolerant systems

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 30th European Symposium on Programming, ESOP 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 24 papers included in this volume were carefully reviewed and selected from 79 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Safe Programming Over Distributed Streams

    Get PDF
    The sheer scale of today\u27s data processing needs has led to a new paradigm of software systems centered around requirements for high-throughput, distributed, low-latency computation.Despite their widespread adoption, existing solutions have yet to provide a programming model with safe semantics -- and they disagree on basic design choices, in particular with their approach to parallelism. As a result, naive programmers are easily led to introduce correctness and performance bugs. This work proposes a reliable programming model for modern distributed stream processing, founded in a type system for partially ordered data streams. On top of the core type system, we propose language abstractions for working with streams -- mechanisms to build stream operators with (1) type-safe compositionality, (2) deterministic distribution, (3) run-time testing, and (4) static performance bounds. Our thesis is that viewing streams as partially ordered conveniently exposes parallelism without compromising safety or determinism. The ideas contained in this work are implemented in a series of open source software projects, including the Flumina, DiffStream, and Data Transducers libraries

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications
    corecore