105 research outputs found

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    Fairness for ABR multipoint-to-point connections

    Full text link
    In multipoint-to-point connections, the traffic at the root (destination) is the combination of all traffic originating at the leaves. A crucial concern in the case of multiple senders is how to define fairness within a multicast group and among groups and point-to-point connections. Fairness definition can be complicated since the multipoint connection can have the same identifier (VPI/VCI) on each link, and senders might not be distinguishable in this case. Many rate allocation algorithms implicitly assume that there is only one sender in each VC, which does not hold for multipoint-to-point cases. We give various possibilities for defining fairness for multipoint connections, and show the tradeoffs involved. In addition, we show that ATM bandwidth allocation algorithms need to be adapted to give fair allocations for multipoint-to-point connections.Comment: Proceedings of SPIE 98, November 199

    Dynamic Feedback Flow Control Algorithms for Unicast and Multicast Available Bit Rate Service in Asynchronous Transfer Mode Networks

    Get PDF
    Asynchronous transfer mode (ATM) network technology has been adopted to integrate different kinds of traffic, like video, audio and data. It provides several service categories including constant bit rate (CBR), variable bit rate (VBR), available bit rate (ABR), and unspecified bit rate (UBR) service. In particular, the ABR service has been approved to use the bandwidth left by CBR and VBR services, which is ideal for data applications and can perform well for real-time applications with the appropriate implementation. Basically ABR servIce attempts to guarantee minimum cell rate, achieve fairness, and minimise cell loss by periodically indicating to sources the rate at which to send. Therefore, there is a critical need for an effective flow control mechanism to allocate network resources (buffers, bandwidth), and provide the negotiated quality of service. This thesis develops dynamic feedback flow control schemes in ATM networks, with primary focus on point-to-point (unicast) and point-tomUltipoint (multicast) ABR algorithms. Firstly, it surveys a number of point-to-point schemes proposed for supporting unicast ABR service. Some of these algorithms do not measure the actual ABR traffic load which leads to either overestimates or underestimates of the bandwidth allocation. Others do not monitor the activity of the sources and overlook the temporarily idle sources. The rest may be implemented with additional complexity. Secondly, the research shifts to the problems of point-to-multipoint algorithms by introducing the basic concept of multicasting ABR servIce and reviewing a group of consolidation schemes, where the compromise between low consolidation nOlse and fast transient response is the main issue. Thirdly, the design and implementation issues have been addressed together with the major drawbacks of the previous schemes and hence two algorithms have been proposed. A dynamic rate-based flow control (DRFC) scheme has been developed to support ABR service in unicast environment, while an adaptive feedback consolidation (AFC) algorithm has been designed for ABR multicasting. Finally, these schemes are extensively tested and compared with others from the literature using a wide range of network configurations and different types of traffic sources. The simulation results show that the DRFC algorithm allocates the available bandwidth fairly among the contending ABR sources, while achieving high link utilisation with reasonable growth of queues. The AFC scheme eliminates the consolidation noise with fast transient response as well as minimising the effect of non-responsive branches

    Explicit congestion control algorithms for available bit rate services in asynchronous transfer mode networks

    Get PDF
    Congestion control of available bit rate (ABR) services in asynchronous transfer mode (ATM) networks has been the recent focus of the ATM Forum. The focus of this dissertation is to study the impact of queueing disciplines on ABR service congestion control, and to develop an explicit rate control algorithm. Two queueing disciplines, namely, First-In-First-Out (FIFO) and per-VC (virtual connection) queueing, are examined. Performance in terms of fairness, throughput, cell loss rate, buffer size and network utilization are benchmarked via extensive simulations. Implementation complexity analysis and trade-offs associated with each queueing implementation are addressed. Contrary to the common belief, our investigation demonstrates that per-VC queueing, which is costlier and more complex, does not necessarily provide any significant improvement over simple FIFO queueing. A new ATM switch algorithm is proposed to complement the ABR congestion control standard. The algorithm is designed to work with the rate-based congestion control framework recently recommended by the ATM Forum for ABR services. The algorithm\u27s primary merits are fast convergence, high throughput, high link utilization, and small buffer requirements. Mathematical analysis is done to show that the algorithm converges to the max-min fair allocation rates in finite time, and the convergence time is proportional to the distinct number of fair allocations and the round-trip delays in the network. At the steady state, the algorithm operates without causing any oscillations in rates. The algorithm does not require any parameter tuning, and proves to be very robust in a large ATM network. The impact of ATM switching and ATM layer congestion control on the performance of TCP/IP traffic is studied and the results are presented. The study shows that ATM layer congestion control improves the performance of TCP/IP traffic over ATM, and implementing the proposed switch algorithm drastically reduces the required switch buffer requirements. In order to validate claims, many benchmark ATM networks are simulated, and the performance of the switch is evaluated in terms of fairness, link utilization, response time, and buffer size requirements. In terms of performance and complexity, the algorithm proposed here offers many advantages over other proposed algorithms in the literature

    Adaptive Multicast of Multi-Layered Video: Rate-Based and Credit-Based Approaches

    Full text link
    Network architectures that can efficiently transport high quality, multicast video are rapidly becoming a basic requirement of emerging multimedia applications. The main problem complicating multicast video transport is variation in network bandwidth constraints. An attractive solution to this problem is to use an adaptive, multi-layered video encoding mechanism. In this paper, we consider two such mechanisms for the support of video multicast; one is a rate-based mechanism that relies on explicit rate congestion feedback from the network, and the other is a credit-based mechanism that relies on hop-by-hop congestion feedback. The responsiveness, bandwidth utilization, scalability and fairness of the two mechanisms are evaluated through simulations. Results suggest that while the two mechanisms exhibit performance trade-offs, both are capable of providing a high quality video service in the presence of varying bandwidth constraints.Comment: 11 page

    Feedback Consolidation Algorithms for ABR Point-to-Multipoint Connections in ATM Networks

    Full text link
    ABR traffic management for point-to-multipoint connections controls the source rate to the minimum rate supported by all the branches of the multicast tree. A number of algorithms have been developed for extending ABR congestion avoidance algorithms to perform feedback consolidation at the branch points. This paper discusses various design options and implementation alternatives for the consolidation algorithms, and proposes a number of new algorithms. The performance of the proposed algorithms and the previous algorithms is compared under a variety of conditions. Results indicate that the algorithms we propose eliminate the consolidation noise (caused if the feedback is returned before all branches respond), while exhibiting a fast transient response.Comment: Proceedings of IEEE INFOCOM 1998, March 1998, volume 3, pp. 1004-101

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    corecore