59,608 research outputs found

    Design and Evaluate a Fair Exchange Protocol Based on Online Trusted Third Party (TTP)

    Get PDF
    One of the most crucial factors that e-commerce protocols should address is a fair exchange. In this research, an advanced method of cryptography coupled with the pay per use technique is used. A new electronic commerce protocol for the exchange of commodities is introduced. The proposed new protocol guarantees both features while addressing the main drawbacks associated with other related protocols. The new suggested e-commerce protocol is composed of two stages: pre-exchange and exchange stages. When the suggested new protocol is analysed with scrupulous protocol analysis, it attains fair exchange and a secure method of payment. The suggested new e-commerce protocol is more efficient than other related existing protocols. In this research “protocol prototype” and “model checking” is used for the purpose of authentication. The protocol prototype verifies that the suggested new protocol is executable when it's used in a real context. By experimental designs, this research shows the length of asymmetric keys as the biggest element that affects the efficiency of the protocol. When model-checking is applied in this protocol, the outcome indicates that the suggested protocol achieves the required features of fairness. Protocol extensions give those involved in the protocol the capacity to be resilient to failure. By using three methods of authentication, this research confirms that the new proposed protocol is well formulated. The work reported in this thesis first study the existing fair exchange protocols that solve the fairness problem. Then, propose more efficient protocol to solve the fairness problem. The original idea in this thesis is to reduce the communication overheads, risks and solve the bottleneck problems in the protocols that involve an online TTP

    Instantaneous Decentralized Poker

    Get PDF
    We present efficient protocols for amortized secure multiparty computation with penalties and secure cash distribution, of which poker is a prime example. Our protocols have an initial phase where the parties interact with a cryptocurrency network, that then enables them to interact only among themselves over the course of playing many poker games in which money changes hands. The high efficiency of our protocols is achieved by harnessing the power of stateful contracts. Compared to the limited expressive power of Bitcoin scripts, stateful contracts enable richer forms of interaction between standard secure computation and a cryptocurrency. We formalize the stateful contract model and the security notions that our protocols accomplish, and provide proofs using the simulation paradigm. Moreover, we provide a reference implementation in Ethereum/Solidity for the stateful contracts that our protocols are based on. We also adopt our off-chain cash distribution protocols to the special case of stateful duplex micropayment channels, which are of independent interest. In comparison to Bitcoin based payment channels, our duplex channel implementation is more efficient and has additional features

    An optimistic fair e-commerce protocol for large e-goods

    Get PDF
    Suppose two entities that do not trust each other want to exchange some arbitrary data over a public channel. A fair exchange protocol ensures that both parties get what they want or neither gets anything. In this paper, a fair e-commerce protocol for large e-goods is proposed and implemented. The proposed protocol provides a method for the fair exchange of e-money for e-products, and a method for verifying the contents of the exchanged items. The protocol is optimistic and efficient such that when none of the parties tries to cheat, only three messages are sufficient. In case of disputes, three more messages are needed. Furthermore, the customer remains anonymous after the transaction; thus, no information about the customers' shopping habits can be gathered through the protocol. The implementation results show that the protocol is efficient and secure and that only a small number of cryptographic operations is sufficient

    TumbleBit: an untrusted Bitcoin-compatible anonymous payment hub

    Get PDF
    This paper presents TumbleBit, a new unidirectional unlinkable payment hub that is fully compatible with today s Bitcoin protocol. TumbleBit allows parties to make fast, anonymous, off-blockchain payments through an untrusted intermediary called the Tumbler. TumbleBits anonymity properties are similar to classic Chaumian eCash: no one, not even the Tumbler, can link a payment from its payer to its payee. Every payment made via TumbleBit is backed by bitcoins, and comes with a guarantee that Tumbler can neither violate anonymity, nor steal bitcoins, nor print money by issuing payments to itself. We prove the security of TumbleBit using the real/ideal world paradigm and the random oracle model. Security follows from the standard RSA assumption and ECDSA unforgeability. We implement TumbleBit, mix payments from 800 users and show that TumbleBits offblockchain payments can complete in seconds.https://eprint.iacr.org/2016/575.pdfPublished versio

    The Evolution of Embedding Metadata in Blockchain Transactions

    Get PDF
    The use of blockchains is growing every day, and their utility has greatly expanded from sending and receiving crypto-coins to smart-contracts and decentralized autonomous organizations. Modern blockchains underpin a variety of applications: from designing a global identity to improving satellite connectivity. In our research we look at the ability of blockchains to store metadata in an increasing volume of transactions and with evolving focus of utilization. We further show that basic approaches to improving blockchain privacy also rely on embedding metadata. This paper identifies and classifies real-life blockchain transactions embedding metadata of a number of major protocols running essentially over the bitcoin blockchain. The empirical analysis here presents the evolution of metadata utilization in the recent years, and the discussion suggests steps towards preventing criminal use. Metadata are relevant to any blockchain, and our analysis considers primarily bitcoin as a case study. The paper concludes that simultaneously with both expanding legitimate utilization of embedded metadata and expanding blockchain functionality, the applied research on improving anonymity and security must also attempt to protect against blockchain abuse.Comment: 9 pages, 6 figures, 1 table, 2018 International Joint Conference on Neural Network

    Anonymous network access using the digital marketplace

    Get PDF
    With increasing usage of mobile telephony, and the trend towards additional mobile Internet usage, privacy and anonymity become more and more important. Previously-published anonymous communication schemes aim to obscure their users' network addresses, because real-world identity can be easily be derived from this information. We propose modifications to a novel call-management architecture, the digital marketplace, which will break this link, therefore enabling truly anonymous network access
    • 

    corecore