2,888 research outputs found

    Automatic segmentation of the left ventricle cavity and myocardium in MRI data

    Get PDF
    A novel approach for the automatic segmentation has been developed to extract the epi-cardium and endo-cardium boundaries of the left ventricle (lv) of the heart. The developed segmentation scheme takes multi-slice and multi-phase magnetic resonance (MR) images of the heart, transversing the short-axis length from the base to the apex. Each image is taken at one instance in the heart's phase. The images are segmented using a diffusion-based filter followed by an unsupervised clustering technique and the resulting labels are checked to locate the (lv) cavity. From cardiac anatomy, the closest pool of blood to the lv cavity is the right ventricle cavity. The wall between these two blood-pools (interventricular septum) is measured to give an approximate thickness for the myocardium. This value is used when a radial search is performed on a gradient image to find appropriate robust segments of the epi-cardium boundary. The robust edge segments are then joined using a normal spline curve. Experimental results are presented with very encouraging qualitative and quantitative results and a comparison is made against the state-of-the art level-sets method

    Gradient matching methods for computational inference in mechanistic models for systems biology: a review and comparative analysis

    Get PDF
    Parameter inference in mathematical models of biological pathways, expressed as coupled ordinary differential equations (ODEs), is a challenging problem in contemporary systems biology. Conventional methods involve repeatedly solving the ODEs by numerical integration, which is computationally onerous and does not scale up to complex systems. Aimed at reducing the computational costs, new concepts based on gradient matching have recently been proposed in the computational statistics and machine learning literature. In a preliminary smoothing step, the time series data are interpolated; then, in a second step, the parameters of the ODEs are optimised so as to minimise some metric measuring the difference between the slopes of the tangents to the interpolants, and the time derivatives from the ODEs. In this way, the ODEs never have to be solved explicitly. This review provides a concise methodological overview of the current state-of-the-art methods for gradient matching in ODEs, followed by an empirical comparative evaluation based on a set of widely used and representative benchmark data

    Sampling and Reconstruction of Shapes with Algebraic Boundaries

    Get PDF
    We present a sampling theory for a class of binary images with finite rate of innovation (FRI). Every image in our model is the restriction of \mathds{1}_{\{p\leq0\}} to the image plane, where \mathds{1} denotes the indicator function and pp is some real bivariate polynomial. This particularly means that the boundaries in the image form a subset of an algebraic curve with the implicit polynomial pp. We show that the image parameters --i.e., the polynomial coefficients-- satisfy a set of linear annihilation equations with the coefficients being the image moments. The inherent sensitivity of the moments to noise makes the reconstruction process numerically unstable and narrows the choice of the sampling kernels to polynomial reproducing kernels. As a remedy to these problems, we replace conventional moments with more stable \emph{generalized moments} that are adjusted to the given sampling kernel. The benefits are threefold: (1) it relaxes the requirements on the sampling kernels, (2) produces annihilation equations that are robust at numerical precision, and (3) extends the results to images with unbounded boundaries. We further reduce the sensitivity of the reconstruction process to noise by taking into account the sign of the polynomial at certain points, and sequentially enforcing measurement consistency. We consider various numerical experiments to demonstrate the performance of our algorithm in reconstructing binary images, including low to moderate noise levels and a range of realistic sampling kernels.Comment: 12 pages, 14 figure

    Direct occlusion handling for high level image processing algorithms

    Get PDF
    Many high-level computer vision algorithms suffer in the presence of occlusions caused by multiple objects overlapping in a view. Occlusions remove the direct correspondence between visible areas of objects and the objects themselves by introducing ambiguity in the interpretation of the shape of the occluded object. Ignoring this ambiguity allows the perceived geometry of overlapping objects to be deformed or even fractured. Supplementing the raw image data with a vectorized structural representation which predicts object completions could stabilize high-level algorithms which currently disregard occlusions. Studies in the neuroscience community indicate that the feature points located at the intersection of junctions may be used by the human visual system to produce these completions. Geiger, Pao, and Rubin have successfully used these features in a purely rasterized setting to complete objects in a fashion similar to what is demonstrated by human perception. This work proposes using these features in a vectorized approach to solving the mid-level computer vision problem of object stitching. A system has been implemented which is able extract L and T-junctions directly from the edges of an image using scale-space and robust statistical techniques. The system is sensitive enough to be able to isolate the corners on polygons with 24 sides or more, provided sufficient image resolution is available. Areas of promising development have been identified and several directions for further research are proposed

    Reduced-rank spatio-temporal modeling of air pollution concentrations in the Multi-Ethnic Study of Atherosclerosis and Air Pollution

    Full text link
    There is growing evidence in the epidemiologic literature of the relationship between air pollution and adverse health outcomes. Prediction of individual air pollution exposure in the Environmental Protection Agency (EPA) funded Multi-Ethnic Study of Atheroscelerosis and Air Pollution (MESA Air) study relies on a flexible spatio-temporal prediction model that integrates land-use regression with kriging to account for spatial dependence in pollutant concentrations. Temporal variability is captured using temporal trends estimated via modified singular value decomposition and temporally varying spatial residuals. This model utilizes monitoring data from existing regulatory networks and supplementary MESA Air monitoring data to predict concentrations for individual cohort members. In general, spatio-temporal models are limited in their efficacy for large data sets due to computational intractability. We develop reduced-rank versions of the MESA Air spatio-temporal model. To do so, we apply low-rank kriging to account for spatial variation in the mean process and discuss the limitations of this approach. As an alternative, we represent spatial variation using thin plate regression splines. We compare the performance of the outlined models using EPA and MESA Air monitoring data for predicting concentrations of oxides of nitrogen (NOx_x)-a pollutant of primary interest in MESA Air-in the Los Angeles metropolitan area via cross-validated R2R^2. Our findings suggest that use of reduced-rank models can improve computational efficiency in certain cases. Low-rank kriging and thin plate regression splines were competitive across the formulations considered, although TPRS appeared to be more robust in some settings.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS786 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Sampling from a system-theoretic viewpoint: Part II - Noncausal solutions

    Get PDF
    This paper puts to use concepts and tools introduced in Part I to address a wide spectrum of noncausal sampling and reconstruction problems. Particularly, we follow the system-theoretic paradigm by using systems as signal generators to account for available information and system norms (L2 and L∞) as performance measures. The proposed optimization-based approach recovers many known solutions, derived hitherto by different methods, as special cases under different assumptions about acquisition or reconstructing devices (e.g., polynomial and exponential cardinal splines for fixed samplers and the Sampling Theorem and its modifications in the case when both sampler and interpolator are design parameters). We also derive new results, such as versions of the Sampling Theorem for downsampling and reconstruction from noisy measurements, the continuous-time invariance of a wide class of optimal sampling-and-reconstruction circuits, etcetera
    corecore