300 research outputs found

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    DIP: Disruption-Tolerance for IP

    Full text link
    Disruption Tolerant Networks (DTN) have been a popular subject of recent research and development. These networks are characterized by frequent, lengthy outages and a lack of contemporaneous end-to-end paths. In this work we discuss techniques for extending IP to operate more effectively in DTN scenarios. Our scheme, Disruption Tolerant IP (DIP) uses existing IP packet headers, uses the existing socket API for applications, is compatible with IPsec, and uses familiar Policy-Based Routing techniques for network management

    Shortest, Fastest, and Foremost Broadcast in Dynamic Networks

    Full text link
    Highly dynamic networks rarely offer end-to-end connectivity at a given time. Yet, connectivity in these networks can be established over time and space, based on temporal analogues of multi-hop paths (also called {\em journeys}). Attempting to optimize the selection of the journeys in these networks naturally leads to the study of three cases: shortest (minimum hop), fastest (minimum duration), and foremost (earliest arrival) journeys. Efficient centralized algorithms exists to compute all cases, when the full knowledge of the network evolution is given. In this paper, we study the {\em distributed} counterparts of these problems, i.e. shortest, fastest, and foremost broadcast with termination detection (TDB), with minimal knowledge on the topology. We show that the feasibility of each of these problems requires distinct features on the evolution, through identifying three classes of dynamic graphs wherein the problems become gradually feasible: graphs in which the re-appearance of edges is {\em recurrent} (class R), {\em bounded-recurrent} (B), or {\em periodic} (P), together with specific knowledge that are respectively nn (the number of nodes), Δ\Delta (a bound on the recurrence time), and pp (the period). In these classes it is not required that all pairs of nodes get in contact -- only that the overall {\em footprint} of the graph is connected over time. Our results, together with the strict inclusion between PP, BB, and RR, implies a feasibility order among the three variants of the problem, i.e. TDB[foremost] requires weaker assumptions on the topology dynamics than TDB[shortest], which itself requires less than TDB[fastest]. Reversely, these differences in feasibility imply that the computational powers of RnR_n, BΔB_\Delta, and PpP_p also form a strict hierarchy

    Algorithms and Design Principles for Rural Kiosk Networks

    Get PDF
    The KioskNet project aims to provide extremely low-cost Internet access to rural kiosks in developing countries, where conventional access technologies, \eg\, DSL, CDMA and dial-up, are currently economically infeasible. In the KioskNet architecture, an Internet-based proxy gathers data from the Internet and sends it to a set of edge nodes, called ``gateways'' from which ferries, such as buses and cars, opportunistically pick up the data using short-range WiFi as they drive past, and deliver it wirelessly to kiosks in remote villages. The first part of this thesis studies the downlink scheduling problem in the context of KioskNet. We pose the following question: assuming knowledge of the bus schedules, when and to which gateway should the proxy send each data bundle so that 1) the bandwidth is shared fairly and 2) given 1), the overall delay is minimized? We show that an existing schedule-aware scheme proposed in the literature, \ie\, EDLQ~\cite{JainFP04}, while superficially appearing to perform well, has some inherent limitations which could lead to poor performance in some situations. Moreover, EDLQ does not provide means to enforce desired bandwidth allocations. To remedy these problems, we employ a token-bucket mechanism to enforce fairness and decouple fairness and delay-minimization concerns. We then describe a utility-based scheduling algorithm which repeatedly computes an optimal schedule for all eligible bundles as they come in. We formulate this optimal scheduling problem as a minimum-cost network-flow problem, for which efficient algorithms exist. Through simulations, we show that the proposed scheme performs at least as well as EDLQ in scenarios that favour EDLQ and achieves up to 40\% reduction in delay in those that do not. Simulation results also indicate that our scheme is robust against the randomness in actual timing of buses. The second part of the thesis shares some of our experience with building and testing the software for KioskNet. We subjected a prototype of the KioskNet system, built on top of the DTN reference implementation, to stress tests and were able to identify and fix several software defects which severely limited the performance. From this experience, we abstract some general principles common to software that deals with opportunistic communication

    Message forwarding techniques in Bluetooth enabled opportunistic communication environment

    Get PDF
    These days, most of the mobile phones are smart enough with computer like intelligence and equipped with multiple communication technologies such as Bluetooth, wireless LAN, GPRS and GSM. Different communication medium on single device have unlocked the new horizon of communication means. Modern mobile phones are not only capable of using traditional way of communication via GSM or GPRS; but, also use wireless LANs using access points where available. Among these communication means, Bluetooth technology is very intriguing and unique in nature. Any two devices equipped with Bluetooth technology can communicate directly due to their unique IDs in the world. This is opposite to GSM or Wireless LAN technology; where devices are dependent on infrastructure of service providers and have to pay for their services. Due to continual advancement in the field of mobile technology, mobile ad-hoc network seems to be more realised than ever using Bluetooth. In traditional mobile ad-hoc networks (MANETs), before information sharing, devices have partial or full knowledge of routes to the destinations using ad-hoc routing protocols. This kind of communication can only be realised if nodes follow the certain pattern. However, in reality mobile ad-hoc networks are highly unpredictable, any node can join or leave network at any time, thus making them risky for effective communication. This issue is addressed by introducing new breed of ad-hoc networking, known as opportunistic networks. Opportunistic networking is a concept that is evolved from mobile ad-hoc networking. In opportunistic networks nodes have no prior knowledge of routes to intended destinations. Any node in the network can be used as potential forwarder with the exception of taking information one step closer to intended destination. The forwarding decision is based on the information gathered from the source node or encountering node. The opportunistic forwarding can only be achieved if message forwarding is carried out in store and forward fashion. Although, opportunistic networks are more flexible than traditional MANETs, however, due to little insight of network, it poses distinct challenges such as intermittent connectivity, variable delays, short connection duration and dynamic topology. Addressing these challenges in opportunistic network is the basis for developing new and efficient protocols for information sharing. The aim of this research is to design different routing/forwarding techniques for opportunistic networks to improve the overall message delivery at destinations while keeping the communication cost very low. Some assumptions are considered to improved directivity of message flow towards intended destinations. These assumptions exploit human social relationships analogies, approximate awareness of the location of nodes in the network and use of hybrid communication by combining several routing concept to gain maximum message directivity. Enhancement in message forwarding in opportunistic networks can be achieved by targeting key nodes that show high degree of influence, popularity or knowledge inside the network. Based on this observation, this thesis presents an improved version of Lobby Influence (LI) algorithm called as Enhanced Lobby Influence (ELI). In LI, the forwarding decision is based on two important factors, popularity of node and popularity of node’s neighbour. The forwarding decision of Enhanced Lobby Influence not only depends on the intermediate node selection criteria as defined in Lobby Influence but also based on the knowledge of previously direct message delivery of intended destination. An improvement can be observed if nodes are aware of approximate position of intended destinations by some communication means such as GPS, GSM or WLAN access points. With the knowledge of nodes position in the network, high message directivity can be achieved by using simple concepts of direction vectors. Based on this observation, this research presents another new algorithm named as Location-aware opportunistic content forwarding (LOC). Last but not least, this research presents an orthodox yet unexplored approach for efficient message forwarding in Bluetooth communication environment, named as Hybrid Content Forwarding (HCF). The new approach combines the characteristics of social centrality based forwarding techniques used in opportunistic networks with traditional MANETs protocols used in Bluetooth scatternets. Simulation results show that a significant increase in delivery radio and cost reduction during content forwarding is observed by deploying these proposed algorithms. Also, comparison with existing technique shows the efficiency of using the new schemes

    Multi-Robot Coordination and Scheduling for Deactivation & Decommissioning

    Get PDF
    Large quantities of high-level radioactive waste were generated during WWII. This waste is being stored in facilities such as double-shell tanks in Washington, and the Waste Isolation Pilot Plant in New Mexico. Due to the dangerous nature of radioactive waste, these facilities must undergo periodic inspections to ensure that leaks are detected quickly. In this work, we provide a set of methodologies to aid in the monitoring and inspection of these hazardous facilities. This allows inspection of dangerous regions without a human operator, and for the inspection of locations where a person would not be physically able to enter. First, we describe a robot equipped with sensors which uses a modified A* path-planning algorithm to navigate in a complex environment with a tether constraint. This is then augmented with an adaptive informative path planning approach that uses the assimilated sensor data within a Gaussian Process distribution model. The model\u27s predictive outputs are used to adaptively plan the robot\u27s path, to quickly map and localize areas from an unknown field of interest. The work was validated in extensive simulation testing and early hardware tests. Next, we focused on how to assign tasks to a heterogeneous set of robots. Task assignment is done in a manner which allows for task-robot dependencies, prioritization of tasks, collision checking, and more realistic travel estimates among other improvements from the state-of-the-art. Simulation testing of this work shows an increase in the number of tasks which are completed ahead of a deadline. Finally, we consider the case where robots are not able to complete planned tasks fully autonomously and require operator assistance during parts of their planned trajectory. We present a sampling-based methodology for allocating operator attention across multiple robots, or across different parts of a more sophisticated robot. This allows few operators to oversee large numbers of robots, allowing for a more scalable robotic infrastructure. This work was tested in simulation for both multi-robot deployment, and high degree-of-freedom robots, and was also tested in multi-robot hardware deployments. The work here can allow robots to carry out complex tasks, autonomously or with operator assistance. Altogether, these three components provide a comprehensive approach towards robotic deployment within the deactivation and decommissioning tasks faced by the Department of Energy
    • …
    corecore