74 research outputs found

    Fair Coexistence of Scheduled and Random Access Wireless Networks: Unlicensed LTE/WiFi

    Get PDF
    We study the fair coexistence of scheduled and random access transmitters sharing the same frequency channel. Interest in coexistence is topical due to the need for emerging unlicensed LTE technologies to coexist fairly with WiFi. However, this interest is not confined to LTE/WiFi as coexistence is likely to become increasingly commonplace in IoT networks and beyond 5G. In this article we show that mixing scheduled and random access incurs and inherent throughput/delay cost, the cost of heterogeneity. We derive the joint proportional fair rate allocation, which casts useful light on current LTE/WiFi discussions. We present experimental results on inter-technology detection and consider the impact of imperfect carrier sensing.Comment: 14 pages, 8 figures, journa

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    MAC/PHY Co-Design of CSMA Wireless Networks Using Software Radios.

    Full text link
    In the past decade, CSMA-based protocols have spawned numerous network standards (e.g., the WiFi family), and played a key role in improving the ubiquity of wireless networks. However, the rapid evolution of CSMA brings unprecedented challenges, especially the coexistence of different network architectures and communications devices. Meanwhile, many intrinsic limitations of CSMA have been the main obstacle to the performance of its derivatives, such as ZigBee, WiFi, and mesh networks. Most of these problems are observed to root in the abstract interface of the CSMA MAC and PHY layers --- the MAC simply abstracts the advancement of PHY technologies as a change of data rate. Hence, the benefits of new PHY technologies are either not fully exploited, or they even may harm the performance of existing network protocols due to poor interoperability. In this dissertation, we show that a joint design of the MAC/PHY layers can achieve a substantially higher level of capacity, interoperability and energy efficiency than the weakly coupled MAC/PHY design in the current CSMA wireless networks. In the proposed MAC/PHY co-design, the PHY layer exposes more states and capabilities to the MAC, and the MAC performs intelligent adaptation to and control over the PHY layer. We leverage the reconfigurability of software radios to design smart signal processing algorithms that meet the challenge of making PHY capabilities usable by the MAC layer. With the approach of MAC/PHY co-design, we have revisited the primitive operations of CSMA (collision avoidance, carrier signaling, carrier sensing, spectrum access and transmitter cooperation), and overcome its limitations in relay and broadcast applications, coexistence of heterogeneous networks, energy efficiency, coexistence of different spectrum widths, and scalability for MIMO networks. We have validated the feasibility and performance of our design using extensive analysis, simulation and testbed implementation.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/95944/1/xyzhang_1.pd

    Towards Scalable Design of Future Wireless Networks

    Full text link
    Wireless operators face an ever-growing challenge to meet the throughput and processing requirements of billions of devices that are getting connected. In current wireless networks, such as LTE and WiFi, these requirements are addressed by provisioning more resources: spectrum, transmitters, and baseband processors. However, this simple add-on approach to scale system performance is expensive and often results in resource underutilization. What are, then, the ways to efficiently scale the throughput and operational efficiency of these wireless networks? To answer this question, this thesis explores several potential designs: utilizing unlicensed spectrum to augment the bandwidth of a licensed network; coordinating transmitters to increase system throughput; and finally, centralizing wireless processing to reduce computing costs. First, we propose a solution that allows LTE, a licensed wireless standard, to co-exist with WiFi in the unlicensed spectrum. The proposed solution bridges the incompatibility between the fixed access of LTE, and the random access of WiFi, through channel reservation. It achieves a fair LTE-WiFi co-existence despite the transmission gaps and unequal frame durations. Second, we consider a system where different MIMO transmitters coordinate to transmit data of multiple users. We present an adaptive design of the channel feedback protocol that mitigates interference resulting from the imperfect channel information. Finally, we consider a Cloud-RAN architecture where a datacenter or a cloud resource processes wireless frames. We introduce a tree-based design for real-time transport of baseband samples and provide its end-to-end schedulability and capacity analysis. We also present a processing framework that combines real-time scheduling with fine-grained parallelism. The framework reduces processing times by migrating parallelizable tasks to idle compute resources, and thus, decreases the processing deadline-misses at no additional cost. We implement and evaluate the above solutions using software-radio platforms and off-the-shelf radios, and confirm their applicability in real-world settings.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133358/1/gkchai_1.pd

    Interference charecterisation, location and bandwidth estimation in emerging WiFi networks

    Get PDF
    Wireless LAN technology based on the IEEE 802.11 standard, commonly referred to as WiFi, has been hugely successful not only for the last hop access to the Internet in home, office and hotspot scenarios but also for realising wireless backhaul in mesh networks and for point -to -point long- distance wireless communication. This success can be mainly attributed to two reasons: low cost of 802.11 hardware from reaching economies of scale, and operation in the unlicensed bands of wireless spectrum.The popularity of WiFi, in particular for indoor wireless access at homes and offices, has led to significant amount of research effort looking at the performance issues arising from various factors, including interference, CSMA/CA based MAC protocol used by 802.11 devices, the impact of link and physical layer overheads on application performance, and spatio-temporal channel variations. These factors affect the performance of applications and services that run over WiFi networks. In this thesis, we experimentally investigate the effects of some of the above mentioned factors in the context of emerging WiFi network scenarios such as multi- interface indoor mesh networks, 802.11n -based WiFi networks and WiFi networks with virtual access points (VAPs). More specifically, this thesis comprises of four experimental characterisation studies: (i) measure prevalence and severity of co- channel interference in urban WiFi deployments; (ii) characterise interference in multi- interface indoor mesh networks; (iii) study the effect of spatio-temporal channel variations, VAPs and multi -band operation on WiFi fingerprinting based location estimation; and (iv) study the effects of newly introduced features in 802.11n like frame aggregation (FA) on available bandwidth estimation.With growing density of WiFi deployments especially in urban areas, co- channel interference becomes a major factor that adversely affects network performance. To characterise the nature of this phenomena at a city scale, we propose using a new measurement methodology called mobile crowdsensing. The idea is to leverage commodity smartphones and the natural mobility of people to characterise urban WiFi co- channel interference. Specifically, we report measurement results obtained for Edinburgh, a representative European city, on detecting the presence of deployed WiFi APs via the mobile crowdsensing approach. These show that few channels in 2.4GHz are heavily used and there is hardly any activity in the 5GHz band even though relatively it has a greater number of available channels. Spatial analysis of spectrum usage reveals that co- channel interference among nearby APs operating in the same channel can be a serious problem with around 10 APs contending with each other in many locations. We find that the characteristics of WiFi deployments at city -scale are similar to those of WiFi deployments in public spaces of different indoor environments. We validate our approach in comparison with wardriving, and also show that our findings generally match with previous studies based on other measurement approaches. As an application of the mobile crowdsensing based urban WiFi monitoring, we outline a cloud based WiFi router configuration service for better interference management with global awareness in urban areas.For mesh networks, the use of multiple radio interfaces is widely seen as a practical way to achieve high end -to -end network performance and better utilisation of available spectrum. However this gives rise to another type of interference (referred to as coexistence interference) due to co- location of multiple radio interfaces. We show that such interference can be so severe that it prevents concurrent successful operation of collocated interfaces even when they use channels from widely different frequency bands. We propose the use of antenna polarisation to mitigate such interference and experimentally study its benefits in both multi -band and single -band configurations. In particular, we show that using differently polarised antennas on a multi -radio platform can be a helpful counteracting mechanism for alleviating receiver blocking and adjacent channel interference phenomena that underlie multi -radio coexistence interference. We also validate observations about adjacent channel interference from previous studies via direct and microscopic observation of MAC behaviour.Location is an indispensable information for navigation and sensing applications. The rapidly growing adoption of smartphones has resulted in a plethora of mobile applications that rely on position information (e.g., shopping apps that use user position information to recommend products to users and help them to find what they want in the store). WiFi fingerprinting is a popular and well studied approach for indoor location estimation that leverages the existing WiFi infrastructure and works based on the difference in strengths of the received AP signals at different locations. However, understanding the impact of WiFi network deployment aspects such as multi -band APs and VAPs has not received much attention in the literature. We first examine the impact of various aspects underlying a WiFi fingerprinting system. Specifically, we investigate different definitions for fingerprinting and location estimation algorithms across different indoor environments ranging from a multi- storey office building to shopping centres of different sizes. Our results show that the fingerprint definition is as important as the choice of location estimation algorithm and there is no single combination of these two that works across all environments or even all floors of a given environment. We then consider the effect of WiFi frequency bands (e.g., 2.4GHz and 5GHz) and the presence of virtual access points (VAPs) on location accuracy with WiFi fingerprinting. Our results demonstrate that lower co- channel interference in the 5GHz band yields more accurate location estimation. We show that the inclusion of VAPs has a significant impact on the location accuracy of WiFi fingerprinting systems; we analyse the potential reasons to explain the findings.End -to -end available bandwidth estimation (ABE) has a wide range of uses, from adaptive application content delivery, transport-level transmission rate adaptation and admission control to traffic engineering and peer node selection in peer -to- peer /overlay networks [ 1, 2]. Given its importance, it has been received much research attention in both wired data networks and legacy WiFi networks (based on 802.11 a/b /g standards), resulting in different ABE techniques and tools proposed to optimise different criteria and suit different scenarios. However, effects of new MAC/PHY layer enhancements in new and next generation WiFi networks (based on 802.11n and 802.11ac standards) have not been studied yet. We experimentally find that among different new features like frame aggregation, channel bonding and MIMO modes (spacial division multiplexing), frame aggregation has the most harmful effect as it has direct effect on ABE by distorting the measurement probing traffic pattern commonly used to estimate available bandwidth. Frame aggregation is also specified in both 802.11n and 802.1 lac standards as a mandatory feature to be supported. We study the effect of enabling frame aggregation, for the first time, on the performance of the ABE using an indoor 802.11n wireless testbed. The analysis of results obtained using three tools - representing two main Probe Rate Model (PRM) and Probe Gap Model (PGM) based approaches for ABE - led us to come up with the two key principles of jumbo probes and having longer measurement probe train sizes to counter the effects of aggregating frames on the performance of ABE tools. Then, we develop a new tool, WBest+ that is aware of the underlying frame aggregation by incorporating these principles. The experimental evaluation of WBest+ shows more accurate ABE in the presence of frame aggregation.Overall, the contributions of this thesis fall in three categories - experimental characterisation, measurement techniques and mitigation/solution approaches for performance problems in emerging WiFi network scenarios. The influence of various factors mentioned above are all studied via experimental evaluation in a testbed or real - world setting. Specifically, co- existence interference characterisation and evaluation of available bandwidth techniques are done using indoor testbeds, whereas characterisation of urban WiFi networks and WiFi fingerprinting based location estimation are carried out in real environments. New measurement approaches are also introduced to aid better experimental evaluation or proposed as new measurement tools. These include mobile crowdsensing based WiFi monitoring; MAC/PHY layer monitoring of co- existence interference; and WBest+ tool for available bandwidth estimation. Finally, new mitigation approaches are proposed to address challenges and problems identified throughout the characterisation studies. These include: a proposal for crowd - based interference management in large scale uncoordinated WiFi networks; exploiting antenna polarisation diversity to remedy the effects of co- existence interference in multi -interface platforms; taking advantage of VAPs and multi -band operation for better location estimation; and introducing the jumbo frame concept and longer probe train sizes to improve performance of ABE tools in next generation WiFi networks

    Evaluation of IEEE 802.11 coexistence in WLAN deployments

    Get PDF
    This is a pre-print of an article published in Wireless Networks. The final authenticated version is available online at: https://doi.org/10.1007/s11276-017-1540-z.Wi-Fi has become a successful technology since the publication of its first WLAN standard due to continuous advances and updates while remaining always backwards compatible. Backwards compatibility among subsequent standards is an important feature in order to take advantage of previous equipment when publishing a new amendment. At present, IEEE 802.11b support is still mandatory to obtain the Wi-Fi certification. However, there are several harmful effects of allowing old legacy IEEE 802.11b transmissions in modern WLAN deployments. Lower throughput per device is obtained at slow rates, but also the effect known as performance anomaly, which nearly leads to starvation of fast stations, has to be taken into account. Finally, backwards compatibility mechanisms pose an important penalty in throughput performance for newer specifications. This paper presents a thorough analysis of the current state of IEEE 802.11, comparing coverage range and throughput performance among subsequent amendments, and focusing on the drawbacks and benefits of including protection mechanisms.Peer ReviewedPostprint (author's final draft

    IEEE 802.11 ๊ธฐ๋ฐ˜ Enterprise ๋ฌด์„  LAN์„ ์œ„ํ•œ ์ž์› ๊ด€๋ฆฌ ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ์ „ํ™”์ˆ™.IEEE 802.11์ด ๋ฌด์„  LAN (wireless local area network, WLAN)์˜ ์‹ค์งˆ์ ์ธ ํ‘œ์ค€์ด ๋จ์— ๋”ฐ๋ผ ์ˆ˜ ๋งŽ์€ ์—‘์„ธ์Šค ํฌ์ธํŠธ(access points, APs)๊ฐ€ ๋ฐฐ์น˜๋˜์—ˆ๊ณ , ๊ทธ ๊ฒฐ๊ณผ WLAN ๋ฐ€์ง‘ ํ™˜๊ฒฝ์ด ์กฐ์„ฑ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ™˜๊ฒฝ์—์„œ๋Š”, ์ด์›ƒํ•œ AP๋“ค์— ๋™์ผํ•œ ์ฑ„๋„์„ ํ• ๋‹นํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ํ”ผํ•  ์ˆ˜ ์—†์œผ๋ฉฐ, ์ด๋Š” ํ•ด๋‹น AP๋“ค์ด ๊ฐ™์€ ์ฑ„๋„์„ ๊ณต์œ ํ•˜๊ฒŒ ํ•˜๊ณ  ๊ทธ๋กœ ์ธํ•œ ๊ฐ„์„ญ์„ ์•ผ๊ธฐํ•œ๋‹ค. ๊ฐ„์„ญ์œผ๋กœ ์ธํ•œ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ์ฑ„๋„ ํ• ๋‹น(channelization) ๊ธฐ๋ฒ•์ด ์ค‘์š”ํ•˜๋‹ค. ๋˜ํ•œ, ํ•œ ์กฐ์ง์ด ํŠน์ • ์ง€์—ญ์— ๋ฐ€์ง‘ ๋ฐฐ์น˜๋œ AP๋“ค์„ ๊ด€๋ฆฌํ•œ๋‹ค๋ฉด ํŠน์ • ์‚ฌ์šฉ์ž๋ฅผ ์„œ๋น„์Šคํ•  ์ˆ˜ ์žˆ๋Š” AP๊ฐ€ ์—ฌ๋Ÿฟ์ผ ์ˆ˜ ์žˆ๋‹ค. ์ด ๊ฒฝ์šฐ, ์‚ฌ์šฉ์ž ์ ‘์†(user association, UA) ๊ธฐ๋ฒ•์ด ์ค€์ •์ (quasi-static) ํ™˜๊ฒฝ๊ณผ ์ฐจ๋Ÿ‰ ํ™˜๊ฒฝ ๋ชจ๋‘์—์„œ ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฐ€์ง‘ ๋ฐฐ์น˜๋œ WLAN ํ™˜๊ฒฝ์—์„œ ์™€์ดํŒŒ์ด(WiFi) ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด ์ฑ„๋„ ํ• ๋‹น ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋จผ์ €, ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์—์„œ๋Š” ๊ฐ๊ฐ์˜ AP์— ์ฑ„๋„์„ ํ• ๋‹นํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ„์„ญ ๊ทธ๋ž˜ํ”„(interference graph)๋ฅผ ์ด์šฉํ•˜๋ฉฐ ์ฑ„๋„ ๊ฒฐํ•ฉ(channel bonding)์„ ๊ณ ๋ คํ•œ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ์ฃผ์–ด์ง„ ์ฑ„๋„ ๊ฒฐํ•ฉ ๊ฒฐ๊ณผ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•ด๋‹น AP๊ฐ€ ๋™์  ์ฑ„๋„ ๊ฒฐํ•ฉ์„ ์ง€์›ํ•˜๋Š”์ง€ ์—ฌ๋ถ€์— ๋”ฐ๋ผ ์ฃผ ์ฑ„๋„(primary channel)์„ ๊ฒฐ์ •ํ•œ๋‹ค. ํ•œํŽธ, ์ค€์ •์  ํ™˜๊ฒฝ๊ณผ ์ฐจ๋Ÿ‰ ํ™˜๊ฒฝ์—์„œ์˜ UA ๋ฌธ์ œ๋Š” ๋‹ค์†Œ ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ๊ฐ์˜ ํ™˜๊ฒฝ์— ๋”ฐ๋ผ ์„œ๋กœ ๋‹ค๋ฅธ UA ๊ธฐ๋ฒ•์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ค€์ •์  ํ™˜๊ฒฝ์—์„œ์˜ UA ๊ธฐ๋ฒ•์€ ๋ฉ€ํ‹ฐ์บ์ŠคํŠธ ์ „์†ก, ๋‹ค์ค‘ ์‚ฌ์šฉ์ž MIMO (multi-user multiple input multiple output), ๊ทธ๋ฆฌ๊ณ  AP ์ˆ˜๋ฉด๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๊ธฐ์ˆ ๊ณผ ํ•จ๊ป˜ AP๊ฐ„์˜ ๋ถ€ํ•˜ ๋ถ„์‚ฐ(load balancing)๊ณผ ์—๋„ˆ์ง€ ์ ˆ์•ฝ์„ ๊ณ ๋ คํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๊ธฐ๋ฒ•์—์„œ UA ๋ฌธ์ œ๋Š” ๋‹ค๋ชฉ์ ํ•จ์ˆ˜ ์ตœ์ ํ™” ๋ฌธ์ œ๋กœ ์ •์‹ํ™”ํ•˜์˜€๊ณ  ๊ทธ ํ•ด๋ฅผ ๊ตฌํ•˜์˜€๋‹ค. ์ฐจ๋Ÿ‰ ํ™˜๊ฒฝ์—์„œ์˜ UA ๊ธฐ๋ฒ•์€ ํ•ธ๋“œ์˜ค๋ฒ„(handover, HO) ์Šค์ผ€์ค„ ๋ฌธ์ œ๋กœ ๊ท€๊ฒฐ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋„๋กœ์˜ ์ง€ํ˜•์„ ๊ณ ๋ คํ•˜์—ฌ ์‚ฌ์šฉ์ž๊ฐ€ ์ ‘์†ํ•  AP๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” HO ์Šค์ผ€์ค„ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์‚ฌ์šฉ์ž๋Š” ๋‹จ์ง€ ๋‹ค์Œ AP๋กœ ์—ฐ๊ฒฐ์„ ๋งบ์„ ์‹œ๊ธฐ๋งŒ ๊ฒฐ์ •ํ•˜๋ฉด ๋˜๊ธฐ ๋•Œ๋ฌธ์—, ์ฐจ๋Ÿ‰ ํ™˜๊ฒฝ์—์„œ์˜ ๋งค์šฐ ๋น ๋ฅด๊ณ  ํšจ์œจ์ ์ธ HO ๊ธฐ๋ฒ•์„ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, ๊ทธ๋ž˜ํ”„ ๋ชจ๋ธ๋ง ๊ธฐ๋ฒ•(graph modeling technique)์„ ํ™œ์šฉํ•˜์—ฌ ๋„๋กœ๋ฅผ ๋”ฐ๋ผ ๋ฐฐ์น˜๋œ AP์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ํ‘œํ˜„ํ•œ๋‹ค. ํ˜„์‹ค์ ์ธ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์œ„ํ•ด ์ง์„  ๊ตฌ๊ฐ„, ์šฐํšŒ ๊ตฌ๊ฐ„, ๊ต์ฐจ๋กœ, ๊ทธ๋ฆฌ๊ณ  ์œ ํ„ด ๊ตฌ๊ฐ„ ๋“ฑ์„ ํฌํ•จํ•˜๋Š” ๋ณต์žกํ•œ ๋„๋กœ ๊ตฌ์กฐ๋ฅผ ๊ณ ๋ คํ•œ๋‹ค. ๋„๋กœ ๊ตฌ์กฐ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ๊ฐ ์‚ฌ์šฉ์ž์˜ ์ด๋™ ๊ฒฝ๋กœ๋ฅผ ์˜ˆ์ธกํ•˜๊ณ , ๊ทธ์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๊ฐ ์‚ฌ์šฉ์ž ๋ณ„ HO์˜ ๋ชฉ์  AP ์ง‘ํ•ฉ์„ ์„ ํƒํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” HO ์Šค์ผ€์ค„ ๊ธฐ๋ฒ•์˜ ์„ค๊ณ„ ๋ชฉ์ ์€ HO ์ง€์—ฐ ์‹œ๊ฐ„์˜ ํ•ฉ์„ ์ตœ์†Œํ™”ํ•˜๊ณ  ๊ฐ AP์—์„œ ํ•ด๋‹น ์ฑ„๋„์„ ์‚ฌ์šฉํ•˜๋ ค๋Š” ์‚ฌ์šฉ์ž ์ˆ˜๋ฅผ ์ค„์ด๋ฉด์„œ WiFi ์—ฐ๊ฒฐ ์‹œ๊ฐ„์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ค€์ •์  ํ™˜๊ฒฝ์—์„œ ์ œ์•ˆํ•œ ์ฑ„๋„ ํ• ๋‹น ๊ธฐ๋ฒ•๊ณผ UA ๊ธฐ๋ฒ•์˜ ํ˜„์‹ค์„ฑ์„ ์ฆ๋ช…ํ•˜๊ธฐ ์œ„ํ•œ ์‹œํ—˜๋Œ€(testbed)๋ฅผ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ด‘๋ฒ”์œ„ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ค€์ •์  ํ™˜๊ฒฝ๊ณผ ์ฐจ๋Ÿ‰ ํ™˜๊ฒฝ์—์„œ ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•๋“ค๊ณผ ๊ธฐ์กด์˜ ๊ธฐ๋ฒ•๋“ค์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์˜€๋‹ค.As the IEEE 802.11 (WiFi) becomes the defacto global standard for wireless local area network (WLAN), a huge number of WiFi access points (APs) are deployed. This condition leads to a densely deployed WLANs. In such environment, the conflicting channel allocation between the neighboring access points (APs) is unavoidable, which causes the channel sharing and interference between APs. Thus, the channel allocation (channelization) scheme has a critical role to tackle this issue. In addition, when densely-deployed APs covering a certain area are managed by a single organization, there can exist multiple candidate APs for serving a user. In this case, the user association (UA), i.e., the selection of serving AP, holds a key role in the network performance both in quasi-static and vehicular environments. To improve the performance of WiFi in a densely deployed WLANs environment, we propose a channelization scheme. The proposed channelization scheme utilizes the interference graph to assign the channel for each AP and considers channel bonding. Then, given the channel bonding assignment, the primary channel location for each AP is determined by observing whether the AP supports the static or dynamic channel bonding. Meanwhile, the UA problem in the quasi-static and vehicular environments are slightly different. Thus, we devise UA schemes both for quasi-static and vehicular environments. The UA schemes for quasi-static environment takes account the load balancing among APs and energy saving, considering various techniques for performance improvement, such as multicast transmission, multi-user MIMO, and AP sleeping, together. Then, we formulate the problem into a multi-objective optimization and get the solution as the UA scheme. On the other hand, the UA scheme in the vehicular environment is realized through handover (HO) scheduling mechanism. Specifically, we propose a HO scheduling scheme running on a server, which determines the AP to which a user will be handed over, considering the road topology. Since a user only needs to decide when to initiate the connection to the next AP, a very fast and efficient HO in the vehicular environment can be realized. For this purpose, we utilize the graph modeling technique to map the relation between APs within the road. We consider a practical scenario where the structure of the road is complex, which includes straight, curve, intersection, and u-turn area. Then, the set of target APs for HO are selected for each user moving on a particular road based-on its moving path which is predicted considering the road topology. The design objective of the proposed HO scheduling is to maximize the connection time on WiFi while minimizing the total HO latency and reducing the number of users which contend for the channel within an AP. Finally, we develop a WLAN testbed to demonstrate the practicality and feasibility of the proposed channelization and UA scheme in a quasi-static environment. Furthermore, through extensive simulations, we compare the performance of the proposed schemes with the existing schemes both in quasi-static and vehicular environments.1 Introduction 1.1 Background and Motivation 1.2 Related Works 1.3 Research Scope and Proposed Schemes 1.3.1 Centralized Channelization Scheme for Wireless LANs Exploiting Channel Bonding 1.3.2 User Association for Load Balancing and Energy Saving in Enterprise WLAN 1.3.3 A Graph-Based Handover Scheduling for Heterogenous Vehicular Networks 1.4 Organization 2 Centralized Channelization Scheme for Wireless LANs Exploiting Channel Bonding 2.1 System Model 2.2 Channel Sharing and Bonding 2.2.1 Interference between APs 2.2.2 Channel Sharing 2.2.3 Channel Bonding 2.3 Channelization Scheme 2.3.1 Building Interference Graph 2.3.2 Channel Allocation 2.3.3 Primary Channel Selection 2.4 Implementation 3 User Association for Load Balancing and Energy Saving in Enterprise Wireless LANs 3.1 System Model 3.1.1 IEEE 802.11 ESS-based Enterprise WLAN 3.1.2 Downlink Achievable Rate for MU-MIMO Groups 3.1.3 Candidate MU-MIMO Groups 3.2 User Association Problem 3.2.1 Factors of UA Objective 3.2.2 Problem Formulation 3.3 User Association Scheme 3.3.1 Equivalent Linear Problem 3.3.2 Solution Algorithm 3.3.3 Computational Complexity (Execution Time) 3.4 Implementation 4 A Graph-Based Handover Scheduling for Heterogenous Vehicular Networks 4.1 System Model 4.2 Graph-Based Modeling 4.2.1 Division of Road Portion into Road Segments 4.2.2 Relation between PoAs on a Road Segment 4.2.3 Directed Graph Representation 4.3 Handover Scheduling Problem 4.3.1 Problem Formulation 4.3.2 Weight of Edge 4.3.3 HO Scheduling Algorithm 4.4 Handover Scheduling Operation 4.4.1 HO Schedule Delivery 4.4.2 HO Triggering and Execution 4.4.3 Communication Overhead 5 Performance Evaluation 5.1 CentralizedChannelizationSchemeforWirelessLANsExploitingChannel Bonding 5.1.1 Experiment Settings 5.1.2 Comparison Schemes 5.1.3 Preliminary Experiment for Building Interference Graph 5.1.4 Experiment Results 5.2 User Association for Load Balancing and Energy Saving in Enterprise Wireless LANs 5.2.1 Performance Metrics 5.2.2 Experiment Settings 5.2.3 Experiment Results 5.2.4 Simulation Settings 5.2.5 Comparison Schemes 5.2.6 Simulation Results 5.2.7 Simulation for MU-MIMO System 5.3 A Graph-BasedHandover Scheduling for Heterogenous Vehicular Networks 5.3.1 Performance Metrics 5.3.2 Simulation Settings 5.3.3 Simulation Results 6 Conculsion Bibliography AcknowledgementsDocto
    • โ€ฆ
    corecore