307 research outputs found

    Instantaneous Decentralized Poker

    Get PDF
    We present efficient protocols for amortized secure multiparty computation with penalties and secure cash distribution, of which poker is a prime example. Our protocols have an initial phase where the parties interact with a cryptocurrency network, that then enables them to interact only among themselves over the course of playing many poker games in which money changes hands. The high efficiency of our protocols is achieved by harnessing the power of stateful contracts. Compared to the limited expressive power of Bitcoin scripts, stateful contracts enable richer forms of interaction between standard secure computation and a cryptocurrency. We formalize the stateful contract model and the security notions that our protocols accomplish, and provide proofs using the simulation paradigm. Moreover, we provide a reference implementation in Ethereum/Solidity for the stateful contracts that our protocols are based on. We also adopt our off-chain cash distribution protocols to the special case of stateful duplex micropayment channels, which are of independent interest. In comparison to Bitcoin based payment channels, our duplex channel implementation is more efficient and has additional features

    Bitcoin Transaction Malleability and MtGox

    Full text link
    In Bitcoin, transaction malleability describes the fact that the signatures that prove the ownership of bitcoins being transferred in a transaction do not provide any integrity guarantee for the signatures themselves. This allows an attacker to mount a malleability attack in which it intercepts, modifies, and rebroadcasts a transaction, causing the transaction issuer to believe that the original transaction was not confirmed. In February 2014 MtGox, once the largest Bitcoin exchange, closed and filed for bankruptcy claiming that attackers used malleability attacks to drain its accounts. In this work we use traces of the Bitcoin network for over a year preceding the filing to show that, while the problem is real, there was no widespread use of malleability attacks before the closure of MtGox

    Improvements to Secure Computation with Penalties

    Get PDF
    Motivated by the impossibility of achieving fairness in secure computation [Cleve, STOC 1986], recent works study a model of fairness in which an adversarial party that aborts on receiving output is forced to pay a mutually predefined monetary penalty to every other party that did not receive the output. These works show how to design protocols for secure computation with penalties that tolerate an arbitrary number of corruptions. In this work, we improve the efficiency of protocols for secure computation with penalties in a hybrid model where parties have access to the “claim-or-refund” transaction functionality. Our first improvement is for the ladder protocol of Bentov and Kumaresan (Crypto 2014) where we improve the dependence of the script complexity of the protocol (which corresponds to miner verification load and also space on the blockchain) on the number of parties from quadratic to linear (and in particular, is completely independent of the underlying function). Our second improvement is for the see-saw protocol of Kumaresan et al. (CCS 2015) where we reduce the total number of claim-or-refund transactions and also the script complexity from quadratic to linear in the number of parties. We also present a ‘dual-mode’ protocol that offers different guarantees depending on the number of corrupt parties: (1) when s n/2 parties are corrupt, this protocol guarantees fairness with penalties (i.e., if the adversary gets the output, then either the honest parties get output as well or they get compensation via penalizing the adversary). The above protocol works as long as t+s < n, matching the bound obtained for secure computation protocols in the standard model (i.e., replacing “fairness with penalties” with “securitywith-abort” (full security except fairness)) by Ishai et al. (SICOMP 2011). Keywords: Bitcoin, secure computation, fairness.National Science Foundation (U.S.) (Grant CNS-1350619)National Science Foundation (U.S.) (Grant CNS1414119)Alfred P. Sloan Foundation (Research Fellowship)Microsoft (Faculty Fellowship

    TKSE: Trustworthy keyword search over encrypted data with two-side verifiability via blockchain

    Get PDF
    AXA Research Fund Singapor
    • 

    corecore