337 research outputs found

    QoS adaptation in multimedia multicast conference applications for e-learning services

    Get PDF
    The evolution of the World Wide Web (WWW) service has incorporated new distributed multimedia conference applications, powering a new generation of e-learning development, and allowing improved interactivity and pro- human relations. Groupware applications are increasingly representative in the Internet home applications market, however, the Quality of Service (QoS) provided by the network is still a limitation impairing their performance. Such applications have found in multicast technology an ally contributing for their efficient implementation and scalability. Additionally, consider QoS as design goal at application level becomes crucial for groupware development, enabling QoS proactivity to applications. The applications’ ability to adapt themselves dynamically according to the resources availability can be considered a quality factor. Tolerant real-time applications, such as videoconferences, are in the frontline to benefit from QoS adaptation. However, not all include adaptive technology able to provide both end-system and network quality awareness. Adaptation, in these cases, can be achieved by introducing a multiplatform middleware layer responsible for tutoring the applications' resources (enabling adjudication or limitation) based on the available processing and networking capabilities. Congregating these technological contributions, an adaptive platform has been developed integrating public domain multicast tools, applied to a web-based distance learning system. The system is user-centered (e-student), aiming at good pedagogical practices and proactive usability for multimedia and network resources. The services provided, including QoS adapted interactive multimedia multicast conferences (MMC), are fully integrated and transparent to end-users. QoS adaptation, when treated systematically in tolerant real-time applications, denotes advantages in group scalability and QoS sustainability in heterogeneous and unpredictable environments such as the Internet

    Cloud service analysis using round-robin algorithm for quality-of-service aware task placement for internet of things services

    Get PDF
    Round-robin (RR) is a process approach to sharing resources that requires each user to get a turn using them in an agreed order in cloud computing. It is suited for time-sharing systems since it automatically reduces the problem of priority inversion, which are low-priority tasks delayed. The time quantum is limited, and only a one-time quantum process is allowed in round-robin scheduling. The objective of this research is to improve the functionality of the current RR method for scheduling actions in the cloud by lowering the average waiting, turnaround, and response time. CloudAnalyst tool was used to enhance the RR technique by changing the parameter value in optimizing the high accuracy and low cost. The result presents the achieved overall min and max response times are 36.69 and 650.30 ms for running 300 min RR. The cost for the virtual machines (VMs) is identified from 0.5to0.5 to 3. The longer the time used, the higher the cost of the data transfer. This research is significant in improving communication and the quality of relationships within groups

    Optimized traffic scheduling and routing in smart home networks

    Get PDF
    Home networks are evolving rapidly to include heterogeneous physical access and a large number of smart devices that generate different types of traffic with different distributions and different Quality of Service (QoS) requirements. Due to their particular architectures, which are very dense and very dynamic, the traditional one-pair-node shortest path solution is no longer efficient to handle inter-smart home networks (inter-SHNs) routing constraints such as delay, packet loss, and bandwidth in all-pair node heterogenous links. In addition, Current QoS-aware scheduling methods consider only the conventional priority metrics based on the IP Type of Service (ToS) field to make decisions for bandwidth allocation. Such priority based scheduling methods are not optimal to provide both QoS and Quality of Experience (QoE), especially for smart home applications, since higher priority traffic does not necessarily require higher stringent delay than lower-priority traffic. Moreover, current QoS-aware scheduling methods in the intra-smart home network (intra-SHN) do not consider concurrent traffic caused by the fluctuation of intra-SH network traffic distributions. Thus, the goal of this dissertation is to build an efficient heterogenous multi-constrained routing mechanism and an optimized traffic scheduling tool in order to maintain a cost-effective communication between all wired-wireless connected devices in inter-SHNs and to effectively process concurrent and non-concurrent traffic in intra-SHN. This will help Internet service providers (ISPs) and home user to enhance the overall QoS and QoE of their applications while maintaining a relevant communication in both inter-SHNs and intra-SHN. In order to meet this goal, three key issues are required to be addressed in our framework and are summarized as follows: i) how to build a cost-effective routing mechanism in heterogonous inter-SHNs ? ii) how to efficiently schedule the multi-sourced intra-SHN traffic based on both QoS and QoE ? and iii) how to design an optimized queuing model for intra-SHN concurrent traffics while considering their QoS requirements? As part of our contributions to solve the first problem highlighted above, we present an analytical framework for dynamically optimizing data flows in inter-SHNs using Software-defined networking (SDN). We formulate a QoS-based routing optimization problem as a constrained shortest path problem and then propose an optimized solution (QASDN) to determine minimal cost between all pairs of nodes in the network taking into account the different types of physical accesses and the network utilization patterns. To address the second issue and to solve the gaps between QoS and QoE, we propose a new queuing model for QoS-level Pair traffic with mixed arrival distributions in Smart Home network (QP-SH) to make a dynamic QoS-aware scheduling decision meeting delay requirements of all traffic while preserving their degrees of criticality. A new metric combining the ToS field and the maximum number of packets that can be processed by the system's service during the maximum required delay, is defined. Finally, as part of our contribution to address the third issue, we present an analytic model for a QoS-aware scheduling optimization of concurrent intra-SHN traffics with mixed arrival distributions and using probabilistic queuing disciplines. We formulate a hybrid QoS-aware scheduling problem for concurrent traffics in intra-SHN, propose an innovative queuing model (QC-SH) based on the auction economic model of game theory to provide a fair multiple access over different communication channels/ports, and design an applicable model to implement auction game on both sides; traffic sources and the home gateway, without changing the structure of the IEEE 802.11 standard. The results of our work offer SHNs more effective data transfer between all heterogenous connected devices with optimal resource utilization, a dynamic QoS/QoE-aware traffic processing in SHN as well as an innovative model for optimizing concurrent SHN traffic scheduling with enhanced fairness strategy. Numerical results show an improvement up to 90% for network resource utilization, 77% for bandwidth, 40% for scheduling with QoS and QoE and 57% for concurrent traffic scheduling delay using our proposed solutions compared with Traditional methods

    The voice activity detection (VAD) recorder and VAD network recorder : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University

    Get PDF
    The project is to provide a feasibility study for the AudioGraph tool, focusing on two application areas: the VAD (voice activity detector) recorder and the VAD network recorder. The first one achieves a low bit-rate speech recording on the fly, using a GSM compression coder with a simple VAD algorithm; and the second one provides two-way speech over IP, fulfilling echo cancellation with a simplex channel. The latter is required for implementing a synchronous AudioGraph. In the first chapter we introduce the background of this project, specifically, the VoIP technology, the AudioGraph tool, and the VAD algorithms. We also discuss the problems set for this project. The second chapter presents all the relevant techniques in detail, including sound representation, speech-coding schemes, sound file formats, PowerPlant and Macintosh programming issues, and the simple VAD algorithm we have developed. The third chapter discusses the implementation issues, including the systems' objective, architecture, the problems encountered and solutions used. The fourth chapter illustrates the results of the two applications. The user documentations for the applications are given, and after that, we analyse the parameters based on the results. We also present the default settings of the parameters, which could be used in the AudioGraph system. The last chapter provides conclusions and future work

    Evaluation of Garbage Management Based on IoT

    Get PDF
    Smart Waste Monitoring: To track the amount of waste in bins and containers, IOT-enabled garbage management systems use sensors and connected devices. These sensors can communicate real-time data to a centralized monitoring system and can identify the fill level. This data aids in streamlining waste collection routes, cutting back on pointless pickups, and enhancing garbage management effectiveness as a whole. Effective Resource Allocation: By giving precise data on waste generation patterns and trends, IOT-based garbage management systems enable optimal resource allocation. This information can be used by municipal authorities to make well-informed decisions on waste collection schedules, resource deployment, and staffing levels. IOT-based waste management solutions have the potential to make trash management procedures more effective and efficient while also being more affordable. The best garbage collection routes, operational cost reductions, and resource utilization may all be achieved with the aid of research into the best deployment strategies for IOT sensors and devices. Environmental Impact and Sustainability: Research Objective: Clearly identify the research objective, for example, by assessing how well IOT-based garbage management systems gather waste and allocate resources. Data gathering: Compile pertinent information on the methods used for trash generation, collection, and resource use. On-site observations, employee interviews, and database access for waste management operations are all effective ways to accomplish this. Gather information on IOT sensor technologies and their capabilities as well. Taken As alternative for Smart Waste Bins, Waste Level, Sensors, AI Recycling, Robots, E-Waste Kiosks. Taken for Evaluation preference is Reliability, Mobility, Service Continuity, User Convenience., and Energy Efficiency. Smart Waste Bins has performed more when compare to with other Real-Time Monitoring: The Internet of Things (IOT) can be used in waste management to enable real-time monitoring of trash cans or bins can be used to enhance garbage sorting procedures. Smart bins with cameras and sensors can automatically recognize and sort various types of rubbish. These smart bins can identify and categorise rubbish by utilizing IOT technology.  on their material composition or recycling category

    Quality-of-service management in IP networks

    Get PDF
    Quality of Service (QoS) in Internet Protocol (IF) Networks has been the subject of active research over the past two decades. Integrated Services (IntServ) and Differentiated Services (DiffServ) QoS architectures have emerged as proposed standards for resource allocation in IF Networks. These two QoS architectures support the need for multiple traffic queuing systems to allow for resource partitioning for heterogeneous applications making use of the networks. There have been a number of specifications or proposals for the number of traffic queuing classes (Class of Service (CoS)) that will support integrated services in IF Networks, but none has provided verification in the form of analytical or empirical investigation to prove that its specification or proposal will be optimum. Despite the existence of the two standard QoS architectures and the large volume of research work that has been carried out on IF QoS, its deployment still remains elusive in the Internet. This is not unconnected with the complexities associated with some aspects of the standard QoS architectures. [Continues.

    Radio resource management and metric estimation for multicarrier CDMA systems

    Get PDF

    Software-Defined Networking-Based Campus Networks Via Deep Reinforcement Learning Algorithms: The Case of University of Technology

    Get PDF
    As a consequence of the COVID-19 pandemic, networks need to be adopted to satisfy the new situation. People have been introduced to new modes of working from home, attending teleconferences, and taking part in e-learning. Other technologies, including smart cities, the Internet of Things, and simulation tools, have also seen a rise in demand. In the new situation, the network most affected is the campus network. Fortunately, a powerful and flexible network model called the software-defined network (SDN) is currently being standardized. SDN can significantly improve the performance of campus networks. Consequently, many scholars and experts have focused on enhancing campus networks via SDN technology. Integrating deep reinforcement learning (DRL) with SDN is pivotal for advancing the quality of service (QoS) of contemporary networks. Their integration enables real-time collaboration, intelligent decision making, and optimized traffic flow and resource allocation. The system proposed in this research is a DRL algorithm applied to a campus network—the University of Technology—and investigated as a case study. The proposed system employs a two-method approach for optimizing the QoS of a network. First, the system classifies service types and directs TCP traffic by using a deep Q-network (DQN) for intelligent routing; then, UDP traffic is managed using the Dijkstra algorithm for shortest-path selection. This hybrid model leverages the strengths of machine learning and classical algorithms to ensure efficient resource allocation and high-quality data transmission. The system combines the adaptability of DQN with the proven reliability of the Dijkstra algorithm to enhance dynamically the network performance. The proposed hybrid system, which used DQN for TCP traffic and the Dijkstra algorithm for UDP traffic, was benchmarked against two other algorithms. The first algorithm was an advanced version of the Dijkstra algorithm that was designed specifically for this study. The second algorithm involved a Q-learning (QL)-based approach. The evaluation metrics included throughput and latency. Tests were conducted under various topologies and load conditions. The research findings revealed a clear advantage of the hybrid system in complex network topologies under heavy-load conditions. The throughput of the proposed system was 30% higher than the advanced Dijkstra and QL algorithms. The latency benefits were pronounced, with a 50% improvement over the competing algorithms

    A software approach to enhancing quality of service in internet commerce

    Get PDF
    • …
    corecore