7,605 research outputs found

    An Efficient Requirement-Aware Attachment Policy for Future Millimeter Wave Vehicular Networks

    Full text link
    The automotive industry is rapidly evolving towards connected and autonomous vehicles, whose ever more stringent data traffic requirements might exceed the capacity of traditional technologies for vehicular networks. In this scenario, densely deploying millimeter wave (mmWave) base stations is a promising approach to provide very high transmission speeds to the vehicles. However, mmWave signals suffer from high path and penetration losses which might render the communication unreliable and discontinuous. Coexistence between mmWave and Long Term Evolution (LTE) communication systems has therefore been considered to guarantee increased capacity and robustness through heterogeneous networking. Following this rationale, we face the challenge of designing fair and efficient attachment policies in heterogeneous vehicular networks. Traditional methods based on received signal quality criteria lack consideration of the vehicle's individual requirements and traffic demands, and lead to suboptimal resource allocation across the network. In this paper we propose a Quality-of-Service (QoS) aware attachment scheme which biases the cell selection as a function of the vehicular service requirements, preventing the overload of transmission links. Our simulations demonstrate that the proposed strategy significantly improves the percentage of vehicles satisfying application requirements and delivers efficient and fair association compared to state-of-the-art schemes.Comment: 8 pages, 8 figures, 2 tables, accepted to the 30th IEEE Intelligent Vehicles Symposiu

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    A novel load-balancing scheme for cellular-WLAN heterogeneous systems with cell-breathing technique

    Get PDF
    This paper proposes a novel load-balancing scheme for an operator-deployed cellular-wireless local area network (WLAN) heterogeneous network (HetNet), where the user association is controlled by employing a cell-breathing technique for the WLAN network. This scheme eliminates the complex coordination and additional signaling overheads between the users and the network by allowing the users to simply associate with the available WLAN networks similar to the traditional WLAN-first association, without making complex association decisions. Thus, this scheme can be easily implemented in an existing operator-deployed cellular-WLAN HetNet. The performance of the proposed scheme is evaluated in terms of load distribution between cellular and WLAN networks, user fairness, and system throughput, which demonstrates the superiority of the proposed scheme in load distribution and user fairness, while optimizing the system throughput. In addition, a cellular-WLAN interworking architecture and signaling procedures are proposed for implementing the proposed load-balancing schemes in an operator-deployed cellular-WLAN HetNet

    Adaptive stochastic radio access selection scheme for cellular-WLAN heterogeneous communication systems

    Get PDF
    This study proposes a novel adaptive stochastic radio access selection scheme for mobile users in heterogeneous cellular-wireless local area network (WLAN) systems. In this scheme, a mobile user located in dual coverage area randomly selects WLAN with probability of ω when there is a need for downloading a chunk of data. The value of ω is optimised according to the status of both networks in terms of network load and signal quality of both cellular and WLAN networks. An analytical model based on continuous time Markov chain is proposed to optimise the value of ω and compute the performance of proposed scheme in terms of energy efficiency, throughput, and call blocking probability. Both analytical and simulation results demonstrate the superiority of the proposed scheme compared with the mainstream network selection schemes: namely, WLAN-first and load balancing

    Delay Minimizing User Association in Cellular Networks via Hierarchically Well-Separated Trees

    Full text link
    We study downlink delay minimization within the context of cellular user association policies that map mobile users to base stations. We note the delay minimum user association problem fits within a broader class of network utility maximization and can be posed as a non-convex quadratic program. This non-convexity motivates a split quadratic objective function that captures the original problem's inherent tradeoff: association with a station that provides the highest signal-to-interference-plus-noise ratio (SINR) vs. a station that is least congested. We find the split-term formulation is amenable to linearization by embedding the base stations in a hierarchically well-separated tree (HST), which offers a linear approximation with constant distortion. We provide a numerical comparison of several problem formulations and find that with appropriate optimization parameter selection, the quadratic reformulation produces association policies with sum delays that are close to that of the original network utility maximization. We also comment on the more difficult problem when idle base stations (those without associated users) are deactivated.Comment: 6 pages, 5 figures. Submitted on 2013-10-03 to the 2015 IEEE International Conference on Communications (ICC). Accepted on 2015-01-09 to the 2015 IEEE International Conference on Communications (ICC
    corecore