1,391 research outputs found

    The Complexity of Fair Division of Indivisible Items with Externalities

    Full text link
    We study the computational complexity of fairly allocating a set of indivisible items under externalities. In this recently-proposed setting, in addition to the utility the agent gets from their bundle, they also receive utility from items allocated to other agents. We focus on the extended definitions of envy-freeness up to one item (EF1) and of envy-freeness up to any item (EFX), and we provide the landscape of their complexity for several different scenarios. We prove that it is NP-complete to decide whether there exists an EFX allocation, even when there are only three agents, or even when there are only six different values for the items. We complement these negative results by showing that when both the number of agents and the number of different values for items are bounded by a parameter the problem becomes fixed-parameter tractable. Furthermore, we prove that two-valued and binary-valued instances are equivalent and that EFX and EF1 allocations coincide for this class of instances. Finally, motivated from real-life scenarios, we focus on a class of structured valuation functions, which we term agent/item-correlated. We prove their equivalence to the ``standard'' setting without externalities. Therefore, all previous results for EF1 and EFX apply immediately for these valuations

    Advances in negotiation theory : bargaining, coalitions, and fairness

    Get PDF
    Bargaining is ubiquitous in real life. It is a major dimension of political and business activities. It appears at the international level, when governments negotiate on matters ranging from economic issues (such as the removal of trade barriers), to global security (such as fighting against terrorism) to environmental and related issues (such as climate change control). What factors determinethe outcomes of such negotiations? What strategies can help reach an agreement? How should the parties involved divide the gains from cooperation? With whom will one make alliances? The authors address these questions by focusing on a noncooperative approach to negotiations, which is particularly relevant for the study of international negotiations. By reviewing noncooperative bargaining theory, noncooperative coalition theory, and the theory of fair division, they try to identify the connections among these different facets of the same problem in an attempt to facilitate progress toward a unified framework.Economic Theory&Research,Social Protections&Assistance,Environmental Economics&Policies,Scientific Research&Science Parks,Science Education

    Advances in Negotiation Theory: Bargaining, Coalitions and Fairness

    Get PDF
    Bargaining is ubiquitous in real-life. It is a major dimension of political and business activities. It appears at the international level, when governments negotiate on matters ranging from economic issues (such as the removal of trade barriers), to global security (such as fighting against terrorism) to environmental and related issues (e.g. climate change control). What factors determine the outcome of negotiations such as those mentioned above? What strategies can help reach an agreement? How should the parties involved divide the gains from cooperation? With whom will one make alliances? This paper addresses these questions by focusing on a non-cooperative approach to negotiations, which is particularly relevant for the study of international negotiations. By reviewing noncooperative bargaining theory, non-cooperative coalition theory, and the theory of fair division, this paper will try to identify the connection among these different facets of the same problem in an attempt to facilitate the progress towards a unified framework.Negotiation theory, Bragaining, Coalitions, Fairness, Agreements

    Fair Allocation of goods and chores -- Tutorial and Survey of Recent Results

    Full text link
    Fair resource allocation is an important problem in many real-world scenarios, where resources such as goods and chores must be allocated among agents. In this survey, we delve into the intricacies of fair allocation, focusing specifically on the challenges associated with indivisible resources. We define fairness and efficiency within this context and thoroughly survey existential results, algorithms, and approximations that satisfy various fairness criteria, including envyfreeness, proportionality, MMS, and their relaxations. Additionally, we discuss algorithms that achieve fairness and efficiency, such as Pareto Optimality and Utilitarian Welfare. We also study the computational complexity of these algorithms, the likelihood of finding fair allocations, and the price of fairness for each fairness notion. We also cover mixed instances of indivisible and divisible items and investigate different valuation and allocation settings. By summarizing the state-of-the-art research, this survey provides valuable insights into fair resource allocation of indivisible goods and chores, highlighting computational complexities, fairness guarantees, and trade-offs between fairness and efficiency. It serves as a foundation for future advancements in this vital field

    Approximate Maximin Shares for Groups of Agents

    Full text link
    We investigate the problem of fairly allocating indivisible goods among interested agents using the concept of maximin share. Procaccia and Wang showed that while an allocation that gives every agent at least her maximin share does not necessarily exist, one that gives every agent at least 2/32/3 of her share always does. In this paper, we consider the more general setting where we allocate the goods to groups of agents. The agents in each group share the same set of goods even though they may have conflicting preferences. For two groups, we characterize the cardinality of the groups for which a constant factor approximation of the maximin share is possible regardless of the number of goods. We also show settings where an approximation is possible or impossible when there are several groups.Comment: To appear in the 10th International Symposium on Algorithmic Game Theory (SAGT), 201

    Advances in Negotiation Theory: Bargaining, Coalitions and Fairness

    Get PDF
    Bargaining is ubiquitous in real-life. It is a major dimension of political and business activities. It appears at the international level, when governments negotiate on matters ranging from economic issues (such as the removal of trade barriers), to global security (such as fighting against terrorism) to environmental and related issues (e.g. climate change control). What factors determine the outcome of negotiations such as those mentioned above? What strategies can help reach an agreement? How should the parties involved divide the gains from cooperation? With whom will one make alliances? This paper addresses these questions by focusing on a non-cooperative approach to negotiations, which is particularly relevant for the study of international negotiations. By reviewing non-cooperative bargaining theory, non-cooperative coalition theory, and the theory of fair division, this paper will try to identify the connection among these different facets of the same problem in an attempt to facilitate the progress towards a unified framework.Negotiation theory, Bargaining, Coalitions, Fairness, Agreements

    The Fair Division of Hereditary Set Systems

    Full text link
    We consider the fair division of indivisible items using the maximin shares measure. Recent work on the topic has focused on extending results beyond the class of additive valuation functions. In this spirit, we study the case where the items form an hereditary set system. We present a simple algorithm that allocates each agent a bundle of items whose value is at least 0.36670.3667 times the maximin share of the agent. This improves upon the current best known guarantee of 0.20.2 due to Ghodsi et al. The analysis of the algorithm is almost tight; we present an instance where the algorithm provides a guarantee of at most 0.37380.3738. We also show that the algorithm can be implemented in polynomial time given a valuation oracle for each agent.Comment: 22 pages, 1 figure, full version of WINE 2018 submissio
    • 

    corecore