12 research outputs found

    Combinatorial Properties and Dependent choice in symmetric extensions based on L\'{e}vy Collapse

    Get PDF
    We work with symmetric extensions based on L\'{e}vy Collapse and extend a few results of Arthur Apter. We prove a conjecture of Ioanna Dimitriou from her P.h.d. thesis. We also observe that if VV is a model of ZFC, then DC<κDC_{<\kappa} can be preserved in the symmetric extension of VV in terms of symmetric system P,G,F\langle \mathbb{P},\mathcal{G},\mathcal{F}\rangle, if P\mathbb{P} is κ\kappa-distributive and F\mathcal{F} is κ\kappa-complete. Further we observe that if VV is a model of ZF + DCκDC_{\kappa}, then DC<κDC_{<\kappa} can be preserved in the symmetric extension of VV in terms of symmetric system P,G,F\langle \mathbb{P},\mathcal{G},\mathcal{F}\rangle, if P\mathbb{P} is κ\kappa-strategically closed and F\mathcal{F} is κ\kappa-complete.Comment: Revised versio

    Inner models with large cardinal features usually obtained by forcing

    Full text link
    We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal \kappa for which 2^\kappa=\kappa^+, another for which 2^\kappa=\kappa^++ and another in which the least strongly compact cardinal is supercompact. If there is a strongly compact cardinal, then there is an inner model with a strongly compact cardinal, for which the measurable cardinals are bounded below it and another inner model W with a strongly compact cardinal \kappa, such that H_{\kappa^+}^V\subseteq HOD^W. Similar facts hold for supercompact, measurable and strongly Ramsey cardinals. If a cardinal is supercompact up to a weakly iterable cardinal, then there is an inner model of the Proper Forcing Axiom and another inner model with a supercompact cardinal in which GCH+V=HOD holds. Under the same hypothesis, there is an inner model with level by level equivalence between strong compactness and supercompactness, and indeed, another in which there is level by level inequivalence between strong compactness and supercompactness. If a cardinal is strongly compact up to a weakly iterable cardinal, then there is an inner model in which the least measurable cardinal is strongly compact. If there is a weakly iterable limit \delta of <\delta-supercompact cardinals, then there is an inner model with a proper class of Laver-indestructible supercompact cardinals. We describe three general proof methods, which can be used to prove many similar results

    Contributions to the theory of Large Cardinals through the method of Forcing

    Full text link
    [eng] The present dissertation is a contribution to the field of Mathematical Logic and, more particularly, to the subfield of Set Theory. Within Set theory, we are mainly concerned with the interactions between the largecardinal axioms and the method of Forcing. This is the line of research with a deeper impact in the subsequent configuration of modern Mathematics. This area has found many central applications in Topology [ST71][Tod89], Algebra [She74][MS94][DG85][Dug85], Analysis [Sol70] or Category Theory [AR94][Bag+15], among others. The dissertation is divided in two thematic blocks: In Block I we analyze the large-cardinal hierarchy between the first supercompact cardinal and Vopenka’s Principle (Part I). In Block II we make a contribution to Singular Cardinal Combinatorics (Part II and Part III). Specifically, in Part I we investigate the Identity Crisis phenomenon in the region comprised between the first supercompact cardinal and Vopenka’s Principle. As a result, we settle all the questions that were left open in [Bag12, §5]. Afterwards, we present a general theory of preservation of C(n)– extendible cardinals under class forcing iterations from which we derive many applications. In Part II and Part III we analyse the relationship between the Singular Cardinal Hypothesis (SCH) and other combinatorial principles, such as the tree property or the reflection of stationary sets. In Part II we generalize the main theorems of [FHS18] and [Sin16] and manage to weaken the largecardinal hypotheses necessary for Magidor-Shelah’s theorem [MS96]. Finally, in Part III we introduce the concept of _-Prikry forcing as a generalization of the classical notion of Prikry-type forcing. Subsequently we devise an abstract iteration scheme for this family of posets and, as an application, we prove the consistency of ZFC + ¬SCH_ + Refl([cat] La present tesi és una contribució a l’estudi de la Lògica Matemàtica i més particularment a la Teoria de Conjunts. Dins de la Teoria de Conjunts, la nostra àrea de recerca s’emmarca dins l’estudi de les interaccions entre els Axiomes de Grans Cardinals i el mètode de Forcing. Aquestes dues eines han tigut un impacte molt profund en la configuració de la matemàtica contemporànea com a conseqüència de la resolució de qüestions centrals en Topologia [ST71][Tod89], Àlgebra [She74][MS94][DG85][Dug85], Anàlisi Matemàtica [Sol70] o Teoria de Categories [AR94][Bag+15], entre d’altres. La tesi s’articula entorn a dos blocs temàtics. Al Bloc I analitzem la jerarquia de Grans Cardinals compresa entre el primer cardinal supercompacte i el Principi de Vopenka (Part I), mentre que al Bloc II estudiem alguns problemes de la Combinatòria Cardinal Singular (Part II i Part III). Més precisament, a la Part I investiguem el fenòmen de Crisi d’Identitat en la regió compresa entre el primer cardinal supercompacte i el Principi de Vopenka. Com a conseqüència d’aquesta anàlisi resolem totes les preguntes obertes de [Bag12, §5]. Posteriorment presentem una teoria general de preservació de cardinals C(n)–extensibles sota iteracions de longitud ORD, de la qual en derivem nombroses aplicacions. A la Part II i Part III analitzem la relació entre la Hipòtesi dels Cardinals Singulars (SCH) i altres principis combinatoris, tals com la Propietat de l’Arbre o la reflexió de conjunts estacionaris. A la Part II obtenim sengles generalitzacions dels teoremes principals de [FHS18] i [Sin16] i afeblim les hipòtesis necessàries perquè el teorema de Magidor-Shelah [MS96] siga cert. Finalment, a la Part III, introduïm el concepte de forcing _-Prikry com a generalització de la noció clàssica de forcing del tipus Prikry. Posteriorment dissenyem un esquema d’iteracions abstracte per aquesta família de forcings i, com a aplicació, derivem la consistència de ZFC + ¬SCH_ + Refl

    Logical Dreams

    Full text link
    We discuss the past and future of set theory, axiom systems and independence results. We deal in particular with cardinal arithmetic

    Small embeddings, forcing with side conditions, and large cardinal characterizations

    Get PDF
    In this thesis, we provide new characterizations for several well-studied large cardinal notions. These characterizations will be of two types. Motivated by seminal work of Magidor, the first type characterizes large cardinals through the existence of so-called small embeddings, elementary embeddings between set-sized structures that map their critical point to the large cardinal in question. Building up on these characterizations, we also provide characterizations of many large cardinal notions through the validity of certain combinatorial principles at omega_2 in generic extensions. The combinatorial principles used in these characterizations are generalizations of large cardinal properties defined through small embeddings that can also hold at accessible cardinals and, for inaccessible cardinals, these principles are equivalent to the original large cardinal property. In this thesis, we focus on generic extensions obtained via the pure side condition forcing introduces by Neeman in his studies of forcing axioms and their generalizations. Our results will provide these two types of characterizations for some of the most prominent large cardinal notions, including inaccessible, Mahlo, Pi^m_n-indescribable cardinals, subtle, lambda-ineffable, and supercompact cardinals. In addition, we will derive small embedding characterizations of measurable, lambda-supercompact and huge cardinals, as well as forcing characterizations of almost huge and super almost huge cardinals. As an application of techniques developed in this work, we provide new proofs of Weiß 's results on the consistency strength of generalized tree properties, eliminating problematic arguments contained in his original proofs. The work presented in this thesis is joint work with Peter Holy and Philipp Lücke. It will be published in the following papers: Peter Holy, Philipp Lücke and Ana Njegomir. Small Embedding Characterizations for Large Cardinals. Annals of Pure and Applied Logic. Volume 170, Issue 2, pp. 251-271, 2019. Peter Holy, Philipp Lücke and Ana Njegomir. Characterizing large cardinals through Neeman's pure side condition forcing. Submitted to Fundamenta Mathematicae, 28 pages, 2018
    corecore