9,860 research outputs found

    A Multi-level Analysis on Implementation of Low-Cost IVF in Sub-Saharan Africa: A Case Study of Uganda.

    Get PDF
    Introduction: Globally, infertility is a major reproductive disease that affects an estimated 186 million people worldwide. In Sub-Saharan Africa, the burden of infertility is considerably high, affecting one in every four couples of reproductive age. Furthermore, infertility in this context has severe psychosocial, emotional, economic and health consequences. Absence of affordable fertility services in Sub-Saharan Africa has been justified by overpopulation and limited resources, resulting in inequitable access to infertility treatment compared to developed countries. Therefore, low-cost IVF (LCIVF) initiatives have been developed to simplify IVF-related treatment, reduce costs, and improve access to treatment for individuals in low-resource contexts. However, there is a gap between the development of LCIVF initiatives and their implementation in Sub-Saharan Africa. Uganda is the first country in East and Central Africa to undergo implementation of LCIVF initiatives within its public health system at Mulago Women’s Hospital. Methods: This was an exploratory, qualitative, single, case study conducted at Mulago Women’s Hospital in Kampala, Uganda. The objective of this study was to explore how LCIVF initiatives have been implemented within the public health system of Uganda at the macro-, meso- and micro-level. Primary qualitative data was collected using semi-structured interviews, hospital observations informal conversations, and document review. Using purposive and snowball sampling, a total of twenty-three key informants were interviewed including government officials, clinicians (doctors, nurses, technicians), hospital management, implementers, patient advocacy representatives, private sector practitioners, international organizational representatives, educational institution, and professional medical associations. Sources of secondary data included government and non-government reports, hospital records, organizational briefs, and press outputs. Using a multi-level data analysis approach, this study undertook a hybrid inductive/deductive thematic analysis, with the deductive analysis guided by the Consolidated Framework for Implementation Research (CFIR). Findings: Factors facilitating implementation included international recognition of infertility as a reproductive disease, strong political advocacy and oversight, patient needs & advocacy, government funding, inter-organizational collaboration, tension to change, competition in the private sector, intervention adaptability & trialability, relative priority, motivation &advocacy of fertility providers and specialist training. While barriers included scarcity of embryologists, intervention complexity, insufficient knowledge, evidence strength & quality of intervention, inadequate leadership engagement & hospital autonomy, poor public knowledge, limited engagement with traditional, cultural, and religious leaders, lack of salary incentives and concerns of revenue loss associated with low-cost options. Research contributions: This study contributes to knowledge of factors salient to implementation of LCIVF initiatives in a Sub-Saharan context. Effective implementation of these initiatives requires (1) sustained political support and favourable policy & legislation, (2) public sensitization and engagement of traditional, cultural, and religious leaders (3) strengthening local innovation and capacity building of fertility health workers, in particular embryologists (4) sustained implementor leadership engagement and inter-organizational collaboration and (5) proven clinical evidence and utilization of LCIVF initiatives in innovator countries. It also adds to the literature on the applicability of the CFIR framework in explaining factors that influence successful implementation in developing countries and offer opportunities for comparisons across studies

    IoT-Based Vehicle Monitoring and Driver Assistance System Framework for Safety and Smart Fleet Management

    Get PDF
    Curbing road accidents has always been one of the utmost priorities in every country. In Malaysia, Traffic Investigation and Enforcement Department reported that Malaysia’s total number of road accidents has increased from 373,071 to 533,875 in the last decade. One of the significant causes of road accidents is driver’s behaviours. However, drivers’ behaviour was challenging to regulate by the enforcement team or fleet operators, especially heavy vehicles. We proposed adopting the Internet of Things (IoT) and its’ emerging technologies to monitor and alert driver’s behavioural and driving patterns in reducing road accidents. In this work, we proposed a lane tracking and iris detection algorithm to monitor and alert the driver’s behaviour when the vehicle sways away from the lane and the driver feeling drowsy, respectively. We implemented electronic devices such as cameras, a global positioning system module, a global system communication module, and a microcontroller as an intelligent transportation system in the vehicle. We implemented face recognition for person identification using the same in-vehicle camera and recorded the working duration for authentication and operation health monitoring, respectively. With the GPS module, we monitored and alerted against permissible vehicle’s speed accordingly. We integrated IoT on the system for the fleet centre to monitor and alert the driver’s behavioural activities in real-time through the user access portal. We validated it successfully on Malaysian roads.  The outcome of this pilot project benefits the safety of drivers, public road users, and passengers. The impact of this framework leads to a new regulation by the government agencies towards merit and demerit system, real-time fleet monitoring of intelligent transportation systems, and socio-economy such as cheaper health premiums. The big data can be used to predict the driver’s behavioural in the future

    Approximate Computing Survey, Part I: Terminology and Software & Hardware Approximation Techniques

    Full text link
    The rapid growth of demanding applications in domains applying multimedia processing and machine learning has marked a new era for edge and cloud computing. These applications involve massive data and compute-intensive tasks, and thus, typical computing paradigms in embedded systems and data centers are stressed to meet the worldwide demand for high performance. Concurrently, the landscape of the semiconductor field in the last 15 years has constituted power as a first-class design concern. As a result, the community of computing systems is forced to find alternative design approaches to facilitate high-performance and/or power-efficient computing. Among the examined solutions, Approximate Computing has attracted an ever-increasing interest, with research works applying approximations across the entire traditional computing stack, i.e., at software, hardware, and architectural levels. Over the last decade, there is a plethora of approximation techniques in software (programs, frameworks, compilers, runtimes, languages), hardware (circuits, accelerators), and architectures (processors, memories). The current article is Part I of our comprehensive survey on Approximate Computing, and it reviews its motivation, terminology and principles, as well it classifies and presents the technical details of the state-of-the-art software and hardware approximation techniques.Comment: Under Review at ACM Computing Survey

    Meso-scale FDM material layout design strategies under manufacturability constraints and fracture conditions

    Get PDF
    In the manufacturability-driven design (MDD) perspective, manufacturability of the product or system is the most important of the design requirements. In addition to being able to ensure that complex designs (e.g., topology optimization) are manufacturable with a given process or process family, MDD also helps mechanical designers to take advantage of unique process-material effects generated during manufacturing. One of the most recognizable examples of this comes from the scanning-type family of additive manufacturing (AM) processes; the most notable and familiar member of this family is the fused deposition modeling (FDM) or fused filament fabrication (FFF) process. This process works by selectively depositing uniform, approximately isotropic beads or elements of molten thermoplastic material (typically structural engineering plastics) in a series of pre-specified traces to build each layer of the part. There are many interesting 2-D and 3-D mechanical design problems that can be explored by designing the layout of these elements. The resulting structured, hierarchical material (which is both manufacturable and customized layer-by-layer within the limits of the process and material) can be defined as a manufacturing process-driven structured material (MPDSM). This dissertation explores several practical methods for designing these element layouts for 2-D and 3-D meso-scale mechanical problems, focusing ultimately on design-for-fracture. Three different fracture conditions are explored: (1) cases where a crack must be prevented or stopped, (2) cases where the crack must be encouraged or accelerated, and (3) cases where cracks must grow in a simple pre-determined pattern. Several new design tools, including a mapping method for the FDM manufacturability constraints, three major literature reviews, the collection, organization, and analysis of several large (qualitative and quantitative) multi-scale datasets on the fracture behavior of FDM-processed materials, some new experimental equipment, and the refinement of a fast and simple g-code generator based on commercially-available software, were developed and refined to support the design of MPDSMs under fracture conditions. The refined design method and rules were experimentally validated using a series of case studies (involving both design and physical testing of the designs) at the end of the dissertation. Finally, a simple design guide for practicing engineers who are not experts in advanced solid mechanics nor process-tailored materials was developed from the results of this project.U of I OnlyAuthor's request

    Comedians without a Cause: The Politics and Aesthetics of Humour in Dutch Cabaret (1966-2020)

    Get PDF
    Comedians play an important role in society and public debate. While comedians have been considered important cultural critics for quite some time, comedy has acquired a new social and political significance in recent years, with humour taking centre stage in political and social debates around issues of identity, social justice, and freedom of speech. To understand the shifting meanings and political implications of humour within a Dutch context, this PhD thesis examines the political and aesthetic workings of humour in the highly popular Dutch cabaret genre, focusing on cabaret performances from the 1960s to the present. The central questions of the thesis are: how do comedians use humour to deliver social critique, and how does their humour resonate with political ideologies? These questions are answered by adopting a cultural studies approach to humour, which is used to analyse Dutch cabaret performances, and by studying related materials such as reviews and media interviews with comedians. This thesis shows that, from the 1960s onwards, Dutch comedians have been considered ‘progressive rebels’ – politically engaged, subversive, and carrying a left-wing political agenda – but that this image is in need of correction. While we tend to look for progressive political messages in the work of comedians who present themselves as being anti-establishment rebels – such as Youp van ‘t Hek, Hans Teeuwen, and Theo Maassen – this thesis demonstrates that their transgressive and provocative humour tends to protect social hierarchies and relationships of power. Moreover, it shows that, paradoxically, both the deliberately moderate and nuanced humour of Wim Kan and Claudia de Breij, and the seemingly past-oriented nostalgia of Alex Klaasen, are more radical and progressive than the transgressive humour of van ‘t Hek, Teeuwen and Maassen. Finally, comedians who present absurdist or deconstructionist forms of humour, such as the early student cabarets, Freek de Jonge, and Micha Wertheim, tend to disassociate themselves from an explicit political engagement. By challenging the dominant image of the Dutch comedian as a ‘progressive rebel,’ this thesis contributes to a better understanding of humour in the present cultural moment, in which humour is often either not taken seriously, or one-sidedly celebrated as being merely pleasurable, innocent, or progressively liberating. In so doing, this thesis concludes, the ‘dark’ and more conservative sides of humour tend to get obscured

    In vitro investigation of the effect of disulfiram on hypoxia induced NFκB, epithelial to mesenchymal transition and cancer stem cells in glioblastoma cell lines

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.Glioblastoma multiforme (GBM) is one of the most aggressive and lethal cancers with a poor prognosis. Advances in the treatment of GBM are limited due to several resistance mechanisms and limited drug delivery into the central nervous system (CNS) compartment by the blood-brain barrier (BBB) and by actions of the normal brain to counteract tumour-targeting medications. Hypoxia is common in malignant brain tumours such as GBM and plays a significant role in tumour pathobiology. It is widely accepted that hypoxia is a major driver of GBM malignancy. Although it has been confirmed that hypoxia induces GBM stem-like-cells (GSCs), which are highly invasive and resistant to all chemotherapeutic agents, the detailed molecular pathways linking hypoxia, GSC traits and chemoresistance remain obscure. Evidence shows that hypoxia induces cancer stem cell phenotypes via epithelial-to-mesenchymal transition (EMT), promoting therapeutic resistance in most cancers, including GBM. This study demonstrated that spheroid cultured GBM cells consist of a large population of hypoxic cells with CSC and EMT characteristics. GSCs are chemo-resistant and displayed increased levels of HIFs and NFκB activity. Similarly, the hypoxia cultured GBM cells manifested GSC traits, chemoresistance and invasiveness. These results suggest that hypoxia is responsible for GBM stemness, chemoresistance and invasiveness. GBM cells transfected with nuclear factor kappa B-p65 (NFκB-p65) subunit exhibited CSC and EMT markers indicating the essential role of NFκB in maintaining GSC phenotypes. The study also highlighted the significance of NFκB in driving chemoresistance, invasiveness, and the potential role of NFκB as the central regulator of hypoxia-induced stemness in GBM cells. GSC population has the ability of self-renewal, cancer initiation and development of secondary heterogeneous cancer. The very poor prognosis of GBM could largely be attributed to the existence of GSCs, which promote tumour propagation, maintenance, radio- and chemoresistance and local infiltration. In this study, we used Disulfiram (DS), a drug used for more than 65 years in alcoholism clinics, in combination with copper (Cu) to target the NFκB pathway, reverse chemoresistance and block invasion in GSCs. The obtained results showed that DS/Cu is highly cytotoxic to GBM cells and completely eradicated the resistant CSC population at low dose levels in vitro. DS/Cu inhibited the migration and invasion of hypoxia-induced CSC and EMT like GBM cells at low nanomolar concentrations. DS is an FDA approved drug with low toxicity to normal tissues and can pass through the BBB. Further research may lead to the quick translation of DS into cancer clinics and provide new therapeutic options to improve treatment outcomes in GBM patients

    Machine learning enabled millimeter wave cellular system and beyond

    Get PDF
    Millimeter-wave (mmWave) communication with advantages of abundant bandwidth and immunity to interference has been deemed a promising technology for the next generation network and beyond. With the help of mmWave, the requirements envisioned of the future mobile network could be met, such as addressing the massive growth required in coverage, capacity as well as traffic, providing a better quality of service and experience to users, supporting ultra-high data rates and reliability, and ensuring ultra-low latency. However, due to the characteristics of mmWave, such as short transmission distance, high sensitivity to the blockage, and large propagation path loss, there are some challenges for mmWave cellular network design. In this context, to enjoy the benefits from the mmWave networks, the architecture of next generation cellular network will be more complex. With a more complex network, it comes more complex problems. The plethora of possibilities makes planning and managing a complex network system more difficult. Specifically, to provide better Quality of Service and Quality of Experience for users in the such network, how to provide efficient and effective handover for mobile users is important. The probability of handover trigger will significantly increase in the next generation network, due to the dense small cell deployment. Since the resources in the base station (BS) is limited, the handover management will be a great challenge. Further, to generate the maximum transmission rate for the users, Line-of-sight (LOS) channel would be the main transmission channel. However, due to the characteristics of mmWave and the complexity of the environment, LOS channel is not feasible always. Non-line-of-sight channel should be explored and used as the backup link to serve the users. With all the problems trending to be complex and nonlinear, and the data traffic dramatically increasing, the conventional method is not effective and efficiency any more. In this case, how to solve the problems in the most efficient manner becomes important. Therefore, some new concepts, as well as novel technologies, require to be explored. Among them, one promising solution is the utilization of machine learning (ML) in the mmWave cellular network. On the one hand, with the aid of ML approaches, the network could learn from the mobile data and it allows the system to use adaptable strategies while avoiding unnecessary human intervention. On the other hand, when ML is integrated in the network, the complexity and workload could be reduced, meanwhile, the huge number of devices and data could be efficiently managed. Therefore, in this thesis, different ML techniques that assist in optimizing different areas in the mmWave cellular network are explored, in terms of non-line-of-sight (NLOS) beam tracking, handover management, and beam management. To be specific, first of all, a procedure to predict the angle of arrival (AOA) and angle of departure (AOD) both in azimuth and elevation in non-line-of-sight mmWave communications based on a deep neural network is proposed. Moreover, along with the AOA and AOD prediction, a trajectory prediction is employed based on the dynamic window approach (DWA). The simulation scenario is built with ray tracing technology and generate data. Based on the generated data, there are two deep neural networks (DNNs) to predict AOA/AOD in the azimuth (AAOA/AAOD) and AOA/AOD in the elevation (EAOA/EAOD). Furthermore, under an assumption that the UE mobility and the precise location is unknown, UE trajectory is predicted and input into the trained DNNs as a parameter to predict the AAOA/AAOD and EAOA/EAOD to show the performance under a realistic assumption. The robustness of both procedures is evaluated in the presence of errors and conclude that DNN is a promising tool to predict AOA and AOD in a NLOS scenario. Second, a novel handover scheme is designed aiming to optimize the overall system throughput and the total system delay while guaranteeing the quality of service (QoS) of each user equipment (UE). Specifically, the proposed handover scheme called O-MAPPO integrates the reinforcement learning (RL) algorithm and optimization theory. An RL algorithm known as multi-agent proximal policy optimization (MAPPO) plays a role in determining handover trigger conditions. Further, an optimization problem is proposed in conjunction with MAPPO to select the target base station and determine beam selection. It aims to evaluate and optimize the system performance of total throughput and delay while guaranteeing the QoS of each UE after the handover decision is made. Third, a multi-agent RL-based beam management scheme is proposed, where multiagent deep deterministic policy gradient (MADDPG) is applied on each small-cell base station (SCBS) to maximize the system throughput while guaranteeing the quality of service. With MADDPG, smart beam management methods can serve the UEs more efficiently and accurately. Specifically, the mobility of UEs causes the dynamic changes of the network environment, the MADDPG algorithm learns the experience of these changes. Based on that, the beam management in the SCBS is optimized according the reward or penalty when severing different UEs. The approach could improve the overall system throughput and delay performance compared with traditional beam management methods. The works presented in this thesis demonstrate the potentiality of ML when addressing the problem from the mmWave cellular network. Moreover, it provides specific solutions for optimizing NLOS beam tracking, handover management and beam management. For NLOS beam tracking part, simulation results show that the prediction errors of the AOA and AOD can be maintained within an acceptable range of ±2. Further, when it comes to the handover optimization part, the numerical results show the system throughput and delay are improved by 10% and 25%, respectively, when compared with two typical RL algorithms, Deep Deterministic Policy Gradient (DDPG) and Deep Q-learning (DQL). Lastly, when it considers the intelligent beam management part, numerical results reveal the convergence performance of the MADDPG and the superiority in improving the system throughput compared with other typical RL algorithms and the traditional beam management method
    • …
    corecore