318 research outputs found

    Intuitionistic fuzzy-based model for failure detection

    Get PDF

    Application Of Intuitionistic Fuzzy Topsis Model For Troubleshooting An Offshore Patrol Boat Engine

    Get PDF
    In this paper, an Intuitionistic Fuzzy TOPSIS model which is based on a score function is proposed for detecting the root cause of failure in an Offshore Boat engine, using groups of expert’s opinions. The study which has provided an alternative approach for failure mode identification and analysis in machines, addresses the machine component interaction failures which is a limitation in existing methods. The results from the study show that although early detection of failures in engines is quite difficult to identify due to the dependency of their systems from each other. However, with the Intuitionistic Fuzzy TOPSIS model which is based on an improved score function such faults/failures are easily detected using expert’s based opinions

    A MODIFIED FMEA APPROACH BASED INTEGRATED DECISION FRAMEWORK FOR OVERCOMING THE PROBLEMS OF SUDDEN FAILURE AND ACCIDENTAL HAZARDS IN TURBINE AND ALTERNATOR UNIT

    Get PDF
    The proposed work presents a novel integrated decision framework, based on Intuitionistic Fuzzy (IF)- Failure Mode & Effect Analysis (IF-FMEA), and IF-Technique for Order of Preference by Similarity to Ideal Solution (IF-TOPSIS) approaches for analysing the failure risk issues of Turbine and Alternator Unit (TAU) in a chemical treatment-based sugar process industry. The proposed novel IF-FMEA approach-based modelling overcomes the various demerits of traditional FMEA approaches which are faced during the identification of critical failure causes based on Risk Priority Number (RPN) outputs. On the basis of detailed qualitative information related to plant operation, FMEA sheet was developed and linguistic ratings were collected against three risk factors such as probability of Occurrence (O), Severity (S), and Detection (D). IF- Hybrid Weighted Euclidean Distance (IFHWED) score has been computed to rank all listed failure causes under three risk factors. The ranking results based on IF-FMEA approach has been compared with the well existed IF-TOPSIS approach for evaluating the accuracy of proposed modelling results. Sensitivity analysis has been also done for checking the robustness of the framework. The analysis results were provided to maintenance executives of the TAU unit to frame optimum maintenance plan for overcoming the problems of sudden breakdown. The analysis results are also applicable to TAU systems which are installed in other chemical process industries globally.

    A Review of Failure Mode and Effects Analysis (FMEA) for Sustainable Manufacturing and Improvement in Electrostatic Chuck Manufacture and Operation

    Get PDF
    Failure modes and effect analysis (FMEA) is widely used in industry to quantify, mitigate, and eliminate risk for products and processes. It has the potential to be an important technique in supporting sustainable manufacturing by reducing the risks associated with transitioning to more sustainable processes. Whilst traditional FMEA does quantify risk by calculating a risk priority number (RPN), there are limitations to the usefulness of this due to the lack of objectiveness inherent in the method. In this paper improvements to the traditional FMEA approach are reviewed and their appropriateness in the specific case of the manufacture of electrostatic chucks (ESC) is considered.</p

    RISK PRIORITY EVALUATION OF POWER TRANSFORMER PARTS BASED ON HYBRID FMEA FRAMEWORK UNDER HESITANT FUZZY ENVIRONMENT

    Get PDF
    The power transformer is one of the most critical facilities in the power system, and its running status directly impacts the power system's security. It is essential to research the risk priority evaluation of the power transformer parts. Failure mode and effects analysis (FMEA) is a methodology for analyzing the potential failure modes (FMs) within a system in various industrial devices. This study puts forward a hybrid FMEA framework integrating novel hesitant fuzzy aggregation tools and CRITIC (Criteria Importance Through Inter-criteria Correlation) method. In this framework, the hesitant fuzzy sets (HFSs) are used to depict the uncertainty in risk evaluation. Then, an improved HFWA (hesitant fuzzy weighted averaging) operator is adopted to fuse risk evaluation for FMEA experts. This aggregation manner can consider different lengths of HFSs and the support degrees among the FMEA experts. Next, the novel HFWGA (hesitant fuzzy weighted geometric averaging) operator with CRITIC weights is developed to determine the risk priority of each FM. This method can satisfy the multiplicative characteristic of the RPN (risk priority number) method of the conventional FMEA model and reflect the correlations between risk indicators. Finally, a real example of the risk priority evaluation of power transformer parts is given to show the applicability and feasibility of the proposed hybrid FMEA framework. Comparison and sensitivity studies are also offered to verify the effectiveness of the improved risk assessment approach

    VIKOR Technique:A Systematic Review of the State of the Art Literature on Methodologies and Applications

    Get PDF
    The main objective of this paper is to present a systematic review of the VlseKriterijuska Optimizacija I Komoromisno Resenje (VIKOR) method in several application areas such as sustainability and renewable energy. This study reviewed a total of 176 papers, published in 2004 to 2015, from 83 high-ranking journals; most of which were related to Operational Research, Management Sciences, decision making, sustainability and renewable energy and were extracted from the “Web of Science and Scopus” databases. Papers were classified into 15 main application areas. Furthermore, papers were categorized based on the nationalities of authors, dates of publications, techniques and methods, type of studies, the names of the journals and studies purposes. The results of this study indicated that more papers on VIKOR technique were published in 2013 than in any other year. In addition, 13 papers were published about sustainability and renewable energy fields. Furthermore, VIKOR and fuzzy VIKOR methods, had the first rank in use. Additionally, the Journal of Expert Systems with Applications was the most significant journal in this study, with 27 publications on the topic. Finally, Taiwan had the first rank from 22 nationalities which used VIKOR technique

    Hybrid-fuzzy techniques with flexibility and attitudinal parameters for supporting early product design and reliability management

    Get PDF
    The main aim of the research work presented in this thesis is to define and develop novel Hybrid Fuzzy-based techniques for supporting aspects of product development engineering, specifically product reliability at the early phase of product design under the design for reliability philosophy and concept designs assessment problems when the required information is rough and incomplete. Thus, to achieve the above-stated aim, which has been formulated in the effort to filling the identified gaps in the literature which comprise of the need for a holistic, flexible and adjustable method to facilitate and support product design concept assessment and product reliability at the early product design phase. The need for the incorporation of the attitudinal character of the DMs into the product reliability and design concept assessment and finally, the need to account for the several interrelated complex attributes in the product reliability and design concept assessment process. A combination of research methods has been employed which includes an extensive literature review, multiple case study approach, and personal interview of experts, through which data were, collected that provided information for the real-life case study. With the new Hybrid Fuzzy-based techniques (i.e. the intuitionistic fuzzy TOPSIS model which is based on an exponential-related function (IF-TOPSISEF) and the Multi-attribute group decision-making (MAGDM) method which is based on a generalized triangular intuitionistic fuzzy geometric averaging (GTIFGA) operator), a more robust method for the product reliability and design concepts assessment respectively have been achieved as displayed in the comparative analysis in the thesis. The new methods have provided a more complete and a holistic view of the assessment process, by looking at the product reliability and design concept assessment from different scenario depending on the interest of the DMs. Using the above methods, the thesis has been able to evaluated some complex mechanical systems in literature and in real-life including Crawler Crane Machine and Forklift Truck for design change with the purpose of gaining appropriate reliability knowledge and information needed at the early product design phase, and that can subsequently aid and improve the product design concepts after all such useful information have been added into the new design. With the application of the new methods, and their proven feasibility and rationality as displayed in the assessment results of the complex mechanical systems in literature and that of the real-life case studies, this thesis, therefore, can conclude that the Hybrid Fuzzy-based techniques proposed, has provided a better and a novel alternative to existing product reliability and design concepts assessment methods
    corecore