940 research outputs found

    A survey of new technology for cockpit application to 1990's transport aircraft simulators

    Get PDF
    Two problems were investigated: inter-equipment data transfer, both on board the aircraft and between air and ground; and crew equipment communication via the cockpit displays and controls. Inter-equipment data transfer is discussed in terms of data bus and data link requirements. Crew equipment communication is discussed regarding the availability of CRT display systems for use in research simulators to represent flat panel displays of the future, and of software controllable touch panels

    Survey of multi-function display and control technology

    Get PDF
    The NASA orbiter spacecraft incorporates a complex array of systems, displays and controls. The incorporation of discrete dedicated controls into a multi-function display and control system (MFDCS) offers the potential for savings in weight, power, panel space and crew training time. The technology applicable to the development of a MFDCS for orbiter application is surveyed. Technology thought to be applicable presently or in the next five years is highlighted. Areas discussed include display media, data handling and processing, controls and operator interactions and the human factors considerations which are involved in a MFDCS design. Several examples of applicable MFDCS technology are described

    Machine Learning in Sensors and Imaging

    Get PDF
    Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens

    A Systematic Approach to Verify an Embedded Capacitive Touchscreen System

    Get PDF
    The conspicuously massive growth in the number of products utilizing capacitive touchscreen technology has raised awareness of the technology. The embedded system used to detect and report finger touches to the host is fairly complex and difficult to verify. An automated verification system is required to systematically test this type of system in a reasonable amount of time. This thesis describes the framework for an automated verification system for embedded capacitive touchscreen systems. The framework includes a Cartesian desktop robot, test instruments, communications bridge, and custom-built test management software. The criteria for selecting a Cartesian desktop robot rather than a SCARA robot are discussed. The SCARA robot provides quicker but less precise movements, while the Cartesian desktop robot supports a larger payload and accommodates more touchscreen panels in its work envelope. The criteria for choosing to develop custom-built test management software instead of purchasing existing off-the-shelf test management are also discussed. Both solutions support hardware abstraction, verification procedures, procedure sequencing, and output of the results. The custom-built solution is more flexible, providing access to how the software framework is implemented and allowing adjustments as needed. Off-the-shelf solutions are limited in what customizations they support and often have unnecessary features that utilize valuable computing resources

    Panoramic, large-screen, 3-D flight display system design

    Get PDF
    The report documents and summarizes the results of the required evaluations specified in the SOW and the design specifications for the selected display system hardware. Also included are the proposed development plan and schedule as well as the estimated rough order of magnitude (ROM) cost to design, fabricate, and demonstrate a flyable prototype research flight display system. The thrust of the effort was development of a complete understanding of the user/system requirements for a panoramic, collimated, 3-D flyable avionic display system and the translation of the requirements into an acceptable system design for fabrication and demonstration of a prototype display in the early 1997 time frame. Eleven display system design concepts were presented to NASA LaRC during the program, one of which was down-selected to a preferred display system concept. A set of preliminary display requirements was formulated. The state of the art in image source technology, 3-D methods, collimation methods, and interaction methods for a panoramic, 3-D flight display system were reviewed in depth and evaluated. Display technology improvements and risk reductions associated with maturity of the technologies for the preferred display system design concept were identified

    Kosketuskäyttöliittymän toteuttaminen olemassa olevaan ohjelmaan

    Get PDF
    The purpose of this work was to evaluate the migration steps of a windowing desktop application into a touch based input enabled software. The study was conducted on an already existing building information modelling software called Tekla BIMsight. The task was to retain all the functionality already in the software while making it possible to be used on touch-enabled devices, such as tablets or convertible laptops with a swivel display. Design and implementation of the system has been documented as part of the thesis, as well as most problematic issues during this period. The effects of the implementation are validated and tested with real users and the results from that study were documented. The usability study was conducted to obtain quantitative and qualitative metrics of the usability. The nature of the input mechanism, direct or indirect, affects the user experience greatly. The final system should be as responsive as possible to maintain a good level of perceived performance. Early prototyping and access to the target devices is critical to the success of a migration process. There are several common mistakes that should be avoided in the design and implementation phases. Not all the problems were critical, but many of them were identified as very cumbersome for the user that would affect the positive user experience of the software. With each new context for a user interface the problems need to be solved again and only experience from such solutions can help alleviate this task. The implemented touch support can be verified to meet the set requirements very well: It allows the system to be used on touch based input environments and all the major user interface elements support this.Työn tarkoituksena oli toteuttaa ja arvioida toimenpiteet ja. menetelmät joilla olemassa olevaan käyttöliittymään voidaan lisätä tuki kosketuskäytölle. Ominaisuudet lisättiin rakennusten tietomallinnuksen tarkasteluohjelmaan, Tekla BIMsight. Tehtävänä oli säilyttää kaikki aiemmat toiminnot ja tehdä ohjelmasta tehokkaasti käytettävä kosketuslaitteilla, kuten tableteilla ja kääntyvällä näytöllä varustetuilla kannettavilla. Suunnittelu ja toteutus järjestelmälle on dokumentoitu työssä ja kaikkein vaativimmat ongelmat. Toteutetun tuen vaikutuksia arvioitiin oikeiden käyttäjien kanssa tehdyssä käyttäjätutkimuksessa, jonka tulokset on esitetty. Käytettävyystutkimuksella hankittiin kvantitatiivista ja kvalitatiivista tietoa tuotteesta. Laite jolla ohjelmistoa käytetään vaikuttaa ohjelmasta saatuun käyttökokemukseen merkittävästi. Hyvän käyttökokemuksen saavuttamiseksi lopullisen järjestelmän käytön tulisi olla sujuvaa. Aikaisten prototyyppien kokeilu ja kohdelaitteiden saatavuus ovat tärkeitä tekijöitä siirtymäprosessin kannalta. Yleisiä ongelmatilanteita ja haasteita joita kohdattiin suunnittelu- ja toteutusvaiheissa on listattu työssä. Loppukäyttäjän kannalta useat ongelmat olivat rasittavia ja vaikuttaisivat käyttökokemukseen negatiivisesti jos niitä ei korjata. Uuden käyttöympäristön tuomat ongelmat joudutaan ratkaisemaan aina uudestaan. Vain kokemuksella vastaavista tilanteista on merkittävästi etua itse ratkaisujen löytämiselle. Toteutetun kosketuskäyttöliittymän tuen voidaan todeta vastaavan sille asetettuja tavoitteita ja vaatimuksia hyvin; se mahdollistaa ohjelman käyttämisen kosketuskäyttöliittymän omaavissa laitteissa ja kaikkein merkittävimmät käyttöliittymäelementit on tuettuina

    Assessment of avionics technology in European aerospace organizations

    Get PDF
    This report provides a summary of the observations and recommendations made by a technical panel formed by the National Aeronautics and Space Administration (NASA). The panel, comprising prominent experts in the avionics field, was tasked to visit various organizations in Europe to assess the level of technology planned for use in manufactured civil avionics in the future. The primary purpose of the study was to assess avionics systems planned for implementation or already employed on civil aircraft and to evaluate future research, development, and engineering (RD&E) programs, address avionic systems and aircraft programs. The ultimate goal is to ensure that the technology addressed by NASa programs is commensurate with the needs of the aerospace industry at an international level. The panel focused on specific technologies, including guidance and control systems, advanced cockpit displays, sensors and data networks, and fly-by-wire/fly-by-light systems. However, discussions the panel had with the European organizations were not limited to these topics

    Evaluation of Physical Finger Input Properties for Precise Target Selection

    Get PDF
    The multitouch tabletop display provides a collaborative workspace for multiple users around a table. Users can perform direct and natural multitouch interaction to select target elements using their bare fingers. However, physical size of fingertip varies from one person to another which generally introduces a fat finger problem. Consequently, it creates the imprecise selection of small size target elements during direct multitouch input. In this respect, an attempt is made to evaluate the physical finger input properties i.e. contact area and shape in the context of imprecise selection

    Space station data system analysis/architecture study. Task 2: Options development DR-5. Volume 1: Technology options

    Get PDF
    The second task in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This volume identifies the preferred options in the technology category and characterizes these options with respect to performance attributes, constraints, cost, and risk. The technology category includes advanced materials, processes, and techniques that can be used to enhance the implementation of SSDS design structures. The specific areas discussed are mass storage, including space and round on-line storage and off-line storage; man/machine interface; data processing hardware, including flight computers and advanced/fault tolerant computer architectures; and software, including data compression algorithms, on-board high level languages, and software tools. Also discussed are artificial intelligence applications and hard-wire communications
    corecore