722 research outputs found

    Failure Inference and Optimization for Step Stress Model Based on Bivariate Wiener Model

    Full text link
    In this paper, we consider the situation under a life test, in which the failure time of the test units are not related deterministically to an observable stochastic time varying covariate. In such a case, the joint distribution of failure time and a marker value would be useful for modeling the step stress life test. The problem of accelerating such an experiment is considered as the main aim of this paper. We present a step stress accelerated model based on a bivariate Wiener process with one component as the latent (unobservable) degradation process, which determines the failure times and the other as a marker process, the degradation values of which are recorded at times of failure. Parametric inference based on the proposed model is discussed and the optimization procedure for obtaining the optimal time for changing the stress level is presented. The optimization criterion is to minimize the approximate variance of the maximum likelihood estimator of a percentile of the products' lifetime distribution

    Statistical Degradation Models for Electronics

    Get PDF
    With increasing presence of electronics in modern systems and in every-day products, their reliability is inextricably dependent on that of their electronics. We develop reliability models for failure-time prediction under small failure-time samples and information on individual degradation history. The development of the model extends the work of Whitmore et al. 1998, to incorporate two new data-structures common to reliability testing. Reliability models traditionally use lifetime information to evaluate the reliability of a device or system. To analyze small failure-time samples within dynamic environments where failure mechanisms are unknown, there is a need for models that make use of auxiliary reliability information. In this thesis we present models suitable for reliability data, where degradation variables are latent and can be tracked by related observable variables we call markers. We provide an engineering justification for our model and develop parametric and predictive inference equations for a data-structure that includes terminal observations of the degradation variable and longitudinal marker measurements. We compare maximum likelihood estimation and prediction results obtained by Whitmore et. al. 1998 and show improvement in inference under small sample sizes. We introduce modeling of variable failure thresholds within the framework of bivariate degradation models and discuss ways of incorporating covariates. In the second part of the thesis we investigate anomaly detection through a Bayesian support vector machine and discuss its place in degradation modeling. We compute posterior class probabilities for time-indexed covariate observations, which we use as measures of degradation. Lastly, we present a multistate model used to model a recurrent event process and failure-times. We compute the expected time to failure using counting process theory and investigate the effect of the event process on the expected failure-time estimates

    Reliability Estimation of Reciprocating Seals Based on Multivariate Dependence Analysis and It\u27s Experimental Validation

    Get PDF
    Accurate reliability estimation for reciprocating seals is of great significance due to their wide use in numerous engineering applications. This work proposes a reliability estimation method for reciprocating seals based on multivariate dependence analysis of different performance indicators. Degradation behavior corresponding to each performance indicator is first described by the Wiener process. Dependence among different performance indicators is then captured using D-vine copula, and a weight-based copula selection method is utilized to determine the optimal bivariate copula for each dependence relationship. A two-stage Bayesian method is used to estimate the parameters in the proposed model. Finally, a reciprocating seal degradation test is conducted, and the proposed reliability estimation approach is validated by test data. Results show that the proposed model is accurate and effective in estimating the reliability of reciprocating seals

    A critical review of online battery remaining useful lifetime prediction methods.

    Get PDF
    Lithium-ion batteries play an important role in our daily lives. The prediction of the remaining service life of lithium-ion batteries has become an important issue. This article reviews the methods for predicting the remaining service life of lithium-ion batteries from three aspects: machine learning, adaptive filtering, and random processes. The purpose of this study is to review, classify and compare different methods proposed in the literature to predict the remaining service life of lithium-ion batteries. This article first summarizes and classifies various methods for predicting the remaining service life of lithium-ion batteries that have been proposed in recent years. On this basis, by selecting specific criteria to evaluate and compare the accuracy of different models, find the most suitable method. Finally, summarize the development of various methods. According to the research in this article, the average accuracy of machine learning is 32.02% higher than the average of the other two methods, and the prediction cycle is 9.87% shorter than the average of the other two methods

    Modeling multivariate degradation processes with time‐variant covariates and imperfect maintenance effects

    Get PDF
    International audienceThis article proposes two types of degradation models that are suitable for describing multivariate degrading systems subject to time‐variant covariates and imperfect maintenance activities. A multivariate Wiener process is constructed as a baseline model, on top of which two types of models are developed to meaningfully characterize the time‐variant covariates and imperfect maintenance effects. The underlying difference between the two models lies in the way of capturing the influences of covariates and maintenance: The first model reflects these impacts in the degradation rates/paths directly, whereas the second one describes the impacts by modifying the time scales governing the degradation processes. In each model, two particular imperfect maintenance models are presented, which differ in the extent of reduction in degradation level or virtual age. The two degradation models are then compared in certain special cases. The proposed multivariate degradation models pertain to complex industrial systems whose health deterioration can be characterized by multiple performance characteristics and can be altered or affected by maintenance activities and operating/environmental conditions

    Optimal Constant-Stress Accelerated Degradation Test Plans Using Nonlinear Generalized Wiener Process

    Get PDF
    Accelerated degradation test (ADT) has been widely used to assess highly reliable products’ lifetime. To conduct an ADT, an appropriate degradation model and test plan should be determined in advance. Although many historical studies have proposed quite a few models, there is still room for improvement. Hence we propose a Nonlinear Generalized Wiener Process (NGWP) model with consideration of the effects of stress level, product-to-product variability, and measurement errors for a higher estimation accuracy and a wider range of use. Then under the constraints of sample size, test duration, and test cost, the plans of constant-stress ADT (CSADT) with multiple stress levels based on the NGWP are designed by minimizing the asymptotic variance of the reliability estimation of the products under normal operation conditions. An optimization algorithm is developed to determine the optimal stress levels, the number of units allocated to each level, inspection frequency, and measurement times simultaneously. In addition, a comparison based on degradation data of LEDs is made to show better goodness-of-fit of the NGWP than that of other models. Finally, optimal two-level and three-level CSADT plans under various constraints and a detailed sensitivity analysis are demonstrated through examples in this paper
    corecore