28,116 research outputs found

    Nachweislich sichere Bewegungsplanung für autonome Fahrzeuge durch Echtzeitverifikation

    Get PDF
    This thesis introduces fail-safe motion planning as the first approach to guarantee legal safety of autonomous vehicles in arbitrary traffic situations. The proposed safety layer verifies whether intended trajectories comply with legal safety and provides fail-safe trajectories when intended trajectories result in safety-critical situations. The presented results indicate that the use of fail-safe motion planning can drastically reduce the number of traffic accidents.Die vorliegende Arbeit führt ein neuartiges Verifikationsverfahren ein, mit dessen Hilfe zum ersten Mal die verkehrsregelkonforme Sicherheit von autonomen Fahrzeugen gewährleistet werden kann. Das Verifikationsverfahren überprüft, ob geplante Trajektorien sicher sind und generiert Rückfalltrajektorien falls diese zu einer unsicheren Situation führen. Die Ergebnisse zeigen, dass die Verwendung des Verfahrens zu einer deutlichen Reduktion von Verkehrsunfällen führt

    Limited Visibility and Uncertainty Aware Motion Planning for Automated Driving

    Full text link
    Adverse weather conditions and occlusions in urban environments result in impaired perception. The uncertainties are handled in different modules of an automated vehicle, ranging from sensor level over situation prediction until motion planning. This paper focuses on motion planning given an uncertain environment model with occlusions. We present a method to remain collision free for the worst-case evolution of the given scene. We define criteria that measure the available margins to a collision while considering visibility and interactions, and consequently integrate conditions that apply these criteria into an optimization-based motion planner. We show the generality of our method by validating it in several distinct urban scenarios

    Decision-Making for Automated Vehicles Using a Hierarchical Behavior-Based Arbitration Scheme

    Full text link
    Behavior planning and decision-making are some of the biggest challenges for highly automated systems. A fully automated vehicle (AV) is confronted with numerous tactical and strategical choices. Most state-of-the-art AV platforms implement tactical and strategical behavior generation using finite state machines. However, these usually result in poor explainability, maintainability and scalability. Research in robotics has raised many architectures to mitigate these problems, most interestingly behavior-based systems and hybrid derivatives. Inspired by these approaches, we propose a hierarchical behavior-based architecture for tactical and strategical behavior generation in automated driving. It is a generalizing and scalable decision-making framework, utilizing modular behavior blocks to compose more complex behaviors in a bottom-up approach. The system is capable of combining a variety of scenario- and methodology-specific solutions, like POMDPs, RRT* or learning-based behavior, into one understandable and traceable architecture. We extend the hierarchical behavior-based arbitration concept to address scenarios where multiple behavior options are applicable but have no clear priority against each other. Then, we formulate the behavior generation stack for automated driving in urban and highway environments, incorporating parking and emergency behaviors as well. Finally, we illustrate our design in an explanatory evaluation

    Autonomous Surface Vehicle based docking for an Autonomous Underwater Vehicle

    Get PDF
    Autonomous underwater vehicles have been used as tools for underwater operations. Autonomy means the capability to perform deliberative planning on-board without any human interaction. The levels of autonomy of underwater vehicles have been increasing over the years. One essential enabler for autonomous operation concerns docking. Autonomous docking will allow vehicles to operate independently of human interaction in remote areas. Docking concepts range from underwater docking stations to launch and recovery from autonomous surface vessels.The Underwater Systems and Technologies Laboratory (LSTS) has been developing and using this type of vehicles for more than twenty years and therefore the need of automatic docking of vehicles has emerged. This dissertation aims to develop an approach for docking between two existing vehicles from the LSTS fleet. The vehicles would be an Autonomous Surface Vehicle (ASV) \textit{Caravela} and a Light Autonomous Underwater Vehicle (LAUV).For this reason, we study and discuss the derivation and simplification of motion equations for sub-aquatic and surface vehicles and known approaches for docking, between a fixed or a moving dock. We studied a way to have localization between the two vehicles using Global Positioning System (GPS) and/or Ultra-Short Baseline (USBL) and the internal Inertial Measurement Unit (IMU), currently available on the systems. Several state machines where implemented in order to have an optimized and fail-safe docking maneuver even having external disturbances like sea-currents on the docking approach.The whole approach was implemented using the tool-chain developed in LSTS (Dune, IMC and Neptus)

    A Fast Integrated Planning and Control Framework for Autonomous Driving via Imitation Learning

    Full text link
    For safe and efficient planning and control in autonomous driving, we need a driving policy which can achieve desirable driving quality in long-term horizon with guaranteed safety and feasibility. Optimization-based approaches, such as Model Predictive Control (MPC), can provide such optimal policies, but their computational complexity is generally unacceptable for real-time implementation. To address this problem, we propose a fast integrated planning and control framework that combines learning- and optimization-based approaches in a two-layer hierarchical structure. The first layer, defined as the "policy layer", is established by a neural network which learns the long-term optimal driving policy generated by MPC. The second layer, called the "execution layer", is a short-term optimization-based controller that tracks the reference trajecotries given by the "policy layer" with guaranteed short-term safety and feasibility. Moreover, with efficient and highly-representative features, a small-size neural network is sufficient in the "policy layer" to handle many complicated driving scenarios. This renders online imitation learning with Dataset Aggregation (DAgger) so that the performance of the "policy layer" can be improved rapidly and continuously online. Several exampled driving scenarios are demonstrated to verify the effectiveness and efficiency of the proposed framework
    corecore