908 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Fade Depth Prediction Using Human Presence for Real Life WSN Deployment

    Get PDF
    Current problem in real life WSN deployment is determining fade depth in indoor propagation scenario for link power budget analysis using (fade margin parameter). Due to the fact that human presence impacts the performance of wireless networks, this paper proposes a statistical approach for shadow fading prediction using various real life parameters. Considered parameters within this paper include statistically mapped human presence and the number of people through time compared to the received signal strength. This paper proposes an empirical model fade depth prediction model derived from a comprehensive set of measured data in indoor propagation scenario. It is shown that the measured fade depth has high correlations with the number of people in non-line-of-sight condition, giving a solid foundation for the fade depth prediction model. In line-of-sight conditions this correlations is significantly lower. By using the proposed model in real life deployment scenarios of WSNs, the data loss and power consumption can be reduced by the means of intelligently planning and designing Wireless Sensor Network

    Emc aerospace systems analysis Interim scientific report

    Get PDF
    Analysis and data requirements for solving potential aerospace electromagnetic compatibility problem

    The Effect of Sand and Dust Storms (SDSs) and Rain on the Performance of Cellular Networks in the Millimeter Wave Band

    Get PDF
    Future cellular systems are expected to use millimeter-wave (mm-Wave) frequency bands in addition to the existing microwave bands under 6 GHz. Severe weather conditions, including sand and dust storms (SDSs) and heavy rainfalls, challenge reliable communications over wireless links at those higher frequencies. In such conditions, besides frequency-dependent path-loss, radio signals experience additional attenuation. The SDS attenuation is related to visibility, receiver distance to the storm origin point, soil type, frequency, temperature and humidity. On the other hand, the rainfall attenuation is affected by rainfall rate, polarization, carrier frequency, temperature and raindrop size distribution. Leveraging on experimental measurements carried out in previous works, a novel unified mathematical framework is introduced in this paper to include SDS/rainfall-dependent attenuation in the performance evaluation of terrestrial wireless cellular networks in terms of coverage probability, bit error rate (BER) and achievable rate in the mm-Wave band. Extensive numerical results are presented to show the effects of the different SDS/rainfall parameters on performance, showing that the degradation due to SDS is generally higher than that due to rain and may cause a reduction of even six orders of magnitude in the average achievable bit rate when the frequency increases from 28 to 38 GHz

    Optical Data Downlinks from Earth Observation Platforms

    Get PDF
    The increasing resolution of earth observation sensors will require much higher data rates for the data downlink in future than is feasible with conventional RF-technology. This applies for earth observation satellites as well as for aeronautic observation platforms, such as aircraft or stratospheric high altitude platforms. The most promising solution for this data downlink bottleneck is the application of optical free space transmission technologies. DLR has built diverse atmospheric flight terminals and performed several trials of optical downlinks from space (together with partnering organizations) as well as from atmospheric carriers in recent years. Here we present and compare results of such communication system trials

    Tropospheric attenuation on Satellite-aircraft propagation: A concise review

    Get PDF
    The attenuation time together with the Complementary Cumulative Distribution Function of attenuation values play a vital role in the design of communication systems. Passengers on-board during flight can be connected to the internet either via satellite or earthstation depending on the nature of the flight. For long distance flight, this internet connectivity is provided through satellite when the aircraft is flying at the upper troposphere. However, the satellite-aircraft link is subject to attenuation due to the troposphere. A model to characterize the channel has been proposed. In particular, a methodology for the synthesis of attenuation on aircraft-satellite is given by ITU-R P2041 recommendation. However, it has been shown that the impact of tropospheric parameters such as rainfall, cloud, gases etc. On the satellite-aircraft link at different frequencies are insignificant (i.e decreases with height) on the upper troposphere since the aircraft is flying (about 12 km) above the rain height (5 km). The findings will be useful for researchers, scientists and the aviation industries in planning, design and establishing link budget for aircraft-satellite path

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial
    corecore