36,132 research outputs found

    Factors in graphs with odd-cycle property

    Get PDF
    AbstractWe present some conditions for the existence of a (g,f)-factor or a (g,f)-parity factor in a graph G with the odd-cycle property that any two odd cycles of G either have a vertex in common or are joined by an edge

    On matchings and factors of graphs /

    Get PDF
    In Section 1, we recall the historical sketch of matching and factor theory of graphs, and also introduce some necessary definitions and notation. In Section 2, we present a sufficient condition for the existence of a (g, f)-factor in graphs with the odd-cycle property, which is simpler than that of Lovasz\u27s (g, f)-Factor Theorem. From this, we derive some further results, and we show that (a) every r-regular graph G with the odd-cycle property has a k-factor, where 0 ≤ k ≤ r and k|V(G)| ≡ 0 (mod 2), (b) every graph G with the strong odd-cycle property with k|V(G)|≡ 0 (mod 2) is k-factorable if and only if G is a km-regular graph for some m ≥ 1, and (c) every regular graph of even order with the strong odd-cycle property is of the second class (i.e. the edge chromatic number is Δ). Chvátal [26] presented the following two conjectures that (1) a graph G has a 2-factor if tough(G) ≥ 3/2, and (2) a graph G has a k-factor if k|V(G)| ≡ 0 (mod 2) and tough(G) ≥ k. Enomoto et.al. [32] proved the second conjecture. They also proved the sharpness of the bound on tough(G) that guarantees the existence of a k-factor. This implies that the first conjecture is false. In Section 3, we show that the result of the second conjecture can be improved in some sense, and the first conjecture is also true if the graph considered has the odd-cycle property. Anderson [3] stated that a graph G of even order has a 1-factor if bind(G) ≥ 4/3, and Katerinis and Woodall [48] proved that a graph G of order n has a k-factor if bind(G) ˃ (2k -I)(n - 1)/(k(n - 2) + 3), where k ≥ 2, n ≥ 4k - 6 and kn ≡ 0 (mod 2). In Section 4, we shall present some similar conditions for the existence of [a, b]-factors. In Section 5, we study the existence of [a, b]-parity-factors in a graph, among which we extend some known theorems from 1-factors to {1, 3, ... , 2n - 1}-factors, or from k-factors to [a, b]-parity-factors. Also, extending Petersen\u27s 2-Factorization Theorem, we proved that a graph is [2a, 2b]-even-factorable if and only if it is a [2na, 2nb]-even-graph for some n ≥ 1. Plummer showed that (a) (in [58]) every graph G of even order is k-extendable if tough(G) ˃ k, and (b) (in [59]) every (2k+1)-connected graph G is k-extendable if G is K1,3-free, respectively. In Section 6, we give a counterpart of the former in terms of binding number, and extend the latter from K1,3-free graphs to K1,n-free graphs. Furthermore, we present a result toward the problem, posed by Saito [61] and Plummer [60], of characterizing the graphs that are maximal k-extendable

    Minimal chordal sense of direction and circulant graphs

    Full text link
    A sense of direction is an edge labeling on graphs that follows a globally consistent scheme and is known to considerably reduce the complexity of several distributed problems. In this paper, we study a particular instance of sense of direction, called a chordal sense of direction (CSD). In special, we identify the class of k-regular graphs that admit a CSD with exactly k labels (a minimal CSD). We prove that connected graphs in this class are Hamiltonian and that the class is equivalent to that of circulant graphs, presenting an efficient (polynomial-time) way of recognizing it when the graphs' degree k is fixed

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved
    corecore