373 research outputs found

    Plex: Towards Reliability using Pretrained Large Model Extensions

    Full text link
    A recent trend in artificial intelligence is the use of pretrained models for language and vision tasks, which have achieved extraordinary performance but also puzzling failures. Probing these models' abilities in diverse ways is therefore critical to the field. In this paper, we explore the reliability of models, where we define a reliable model as one that not only achieves strong predictive performance but also performs well consistently over many decision-making tasks involving uncertainty (e.g., selective prediction, open set recognition), robust generalization (e.g., accuracy and proper scoring rules such as log-likelihood on in- and out-of-distribution datasets), and adaptation (e.g., active learning, few-shot uncertainty). We devise 10 types of tasks over 40 datasets in order to evaluate different aspects of reliability on both vision and language domains. To improve reliability, we developed ViT-Plex and T5-Plex, pretrained large model extensions for vision and language modalities, respectively. Plex greatly improves the state-of-the-art across reliability tasks, and simplifies the traditional protocol as it improves the out-of-the-box performance and does not require designing scores or tuning the model for each task. We demonstrate scaling effects over model sizes up to 1B parameters and pretraining dataset sizes up to 4B examples. We also demonstrate Plex's capabilities on challenging tasks including zero-shot open set recognition, active learning, and uncertainty in conversational language understanding.Comment: Code available at https://goo.gle/plex-cod

    Mitigating Representation Bias in Action Recognition: Algorithms and Benchmarks

    Full text link
    Deep learning models have achieved excellent recognition results on large-scale video benchmarks. However, they perform poorly when applied to videos with rare scenes or objects, primarily due to the bias of existing video datasets. We tackle this problem from two different angles: algorithm and dataset. From the perspective of algorithms, we propose Spatial-aware Multi-Aspect Debiasing (SMAD), which incorporates both explicit debiasing with multi-aspect adversarial training and implicit debiasing with the spatial actionness reweighting module, to learn a more generic representation invariant to non-action aspects. To neutralize the intrinsic dataset bias, we propose OmniDebias to leverage web data for joint training selectively, which can achieve higher performance with far fewer web data. To verify the effectiveness, we establish evaluation protocols and perform extensive experiments on both re-distributed splits of existing datasets and a new evaluation dataset focusing on the action with rare scenes. We also show that the debiased representation can generalize better when transferred to other datasets and tasks.Comment: ECCVW 202
    • …
    corecore