127,924 research outputs found

    Labview-based FPGA implementation of sensor data acquisition for human body motion measurement

    Get PDF
    Measuring body motion is crucial to identify any abnormal neuromuscular control, biomechanical disorders and injury prevention in various applications such as rehabilitation [1], [2], sport science [3],[4], surveillance [5], and virtual reality [6]. The measurement can be performed by using vision-based [7]-[9] and non-vision-based [10]-[12] systems. The vision-based systems use optical sensors, such as cameras, to track human movements. Whilst the non-vision-based systems employ sensor technology, such as magnetic, and inertial, attached to the human body to collect human movement information. The vision-based systems offer a more accurate system, however, in this work, the non-vision-based systems are employed as it offers portability as one of the advantages

    Towards a Coherent Theory of Physics and Mathematics

    Get PDF
    As an approach to a Theory of Everything a framework for developing a coherent theory of mathematics and physics together is described. The main characteristic of such a theory is discussed: the theory must be valid and and sufficiently strong, and it must maximally describe its own validity and sufficient strength. The mathematical logical definition of validity is used, and sufficient strength is seen to be a necessary and useful concept. The requirement of maximal description of its own validity and sufficient strength may be useful to reject candidate coherent theories for which the description is less than maximal. Other aspects of a coherent theory discussed include universal applicability, the relation to the anthropic principle, and possible uniqueness. It is suggested that the basic properties of the physical and mathematical universes are entwined with and emerge with a coherent theory. Support for this includes the indirect reality status of properties of very small or very large far away systems compared to moderate sized nearby systems. Discussion of the necessary physical nature of language includes physical models of language and a proof that the meaning content of expressions of any axiomatizable theory seems to be independent of the algorithmic complexity of the theory. G\"{o}del maps seem to be less useful for a coherent theory than for purely mathematical theories because all symbols and words of any language musthave representations as states of physical systems already in the domain of a coherent theory.Comment: 38 pages, earlier version extensively revised and clarified. Accepted for publication in Foundations of Physic

    Cross-domain priming from mathematics to relative-clause attachment: a visual-world study in French

    Get PDF
    Human language processing must rely on a certain degree of abstraction, as we can produce and understand sentences that we have never produced or heard before. One way to establish syntactic abstraction is by investigating structural priming. Structural priming has been shown to be effective within a cognitive domain, in the present case, the linguistic domain. But does priming also work across different domains? In line with previous experiments, we investigated cross-domain structural priming from mathematical expressions to linguistic structures with respect to relative clause attachment in French (e.g., la fille du professeur qui habitait à Paris/the daughter of the teacher who lived in Paris). Testing priming in French is particularly interesting because it will extend earlier results established for English to a language where the baseline for relative clause attachment preferences is different form English: in English, relative clauses (RCs) tend to be attached to the local noun phrase (low attachment) while in French there is a preference for high attachment of relative clauses to the first noun phrase (NP). Moreover, in contrast to earlier studies, we applied an online-technique (visual world eye-tracking). Our results confirm cross-domain priming from mathematics to linguistic structures in French. Most interestingly, different from less mathematically adept participants, we found that in mathematically skilled participants, the effect emerged very early on (at the beginning of the relative clause in the speech stream) and is also present later (at the end of the relative clause). In line with previous findings, our experiment suggests that mathematics and language share aspects of syntactic structure at a very high-level of abstraction

    Renewing the framework for secondary mathematics : spring 2008 subject leader development meeting : sessions 2, 3 and 4

    Get PDF

    Why 'scaffolding' is the wrong metaphor : the cognitive usefulness of mathematical representations.

    Get PDF
    The metaphor of scaffolding has become current in discussions of the cognitive help we get from artefacts, environmental affordances and each other. Consideration of mathematical tools and representations indicates that in these cases at least (and plausibly for others), scaffolding is the wrong picture, because scaffolding in good order is immobile, temporary and crude. Mathematical representations can be manipulated, are not temporary structures to aid development, and are refined. Reflection on examples from elementary algebra indicates that Menary is on the right track with his ‘enculturation’ view of mathematical cognition. Moreover, these examples allow us to elaborate his remarks on the uniqueness of mathematical representations and their role in the emergence of new thoughts.Peer reviewe

    The Emergence of Symbolic Algebra as a Shift in Predominant Models

    Get PDF
    Historians of science find it difficult to pinpoint to an exact period in which symbolic algebra came into existence. This can be explained partly because the historical process leading to this breakthrough in mathematics has been a complex and diffuse one. On the other hand, it might also be the case that in the early twentieth century, historians of mathematics over emphasized the achievements in algebraic procedures and underestimated the conceptual changes leading to symbolic algebra. This paper attempts to provide a more precise setting for the historical context in which this decisive step to symbolic reasoning took place. For that purpose we will consider algebraic problem solving as model-based reasoning and symbolic representation as a model. This allows us to characterize the emergence of symbolic algebra as a shift from a geometrical to a symbolic mode of representation. The use of the symbolic as a model will be situated in the context of mercantilism where merchant activity of exchange has led to reciprocal relations between money and wealth

    Human resource allocation to multiple projects based on members’ expertise, group heterogeneity and social cohesion

    Get PDF
    Project managers regularly allocate human resources to construction projects. This critical task is usually executed by fulfilling the minimum project staffing requirements normally based around the quantity and competence of project members. However, research has shown that team performance can increase by up to 10% and 18%, respectively, as a consequence of the group members’ heterogeneity and social cohesion. Also, there is currently no practical quantitative tool which incorporates these aspects to allow project managers to achieve this task efficiently and objectively. A new quantitative model for the effective allocation of human resources to multiple projects, which takes into account group heterogeneity and social cohesion is proposed. This model is easy to build, update and use in real project environments with the use of a spreadsheet and a basic optimization engine (e.g. Excel Solver). A case study is proposed and solved with a Genetic Algorithm to illustrate the model implementation. Finally, a validation example is provided to exemplify how group heterogeneity and social cohesion condition academic achievement in an academic setting
    • …
    corecore