2,540 research outputs found

    Vertex-deleted subgraphs and regular factors from regular graph

    Get PDF
    Let kk, mm and rr be three integers such that 2kmr2\leq k\leq m\leq r. Let GG be a 2r2r-regular, 2m2m-edge-connected graph of odd order. We obtain some sufficient conditions, which guarantee GvG-v contains a kk-factor for all vV(G)v\in V(G)

    Disjoint induced subgraphs of the same order and size

    Full text link
    For a graph GG, let f(G)f(G) be the largest integer kk for which there exist two vertex-disjoint induced subgraphs of GG each on kk vertices, both inducing the same number of edges. We prove that f(G)n/2o(n)f(G) \ge n/2 - o(n) for every graph GG on nn vertices. This answers a question of Caro and Yuster.Comment: 25 pages, improved presentation, fixed misprints, European Journal of Combinatoric

    Isomorph-free generation of 2-connected graphs with applications

    Get PDF
    Many interesting graph families contain only 2-connected graphs, which have ear decompositions. We develop a technique to generate families of unlabeled 2-connected graphs using ear augmentations and apply this technique to two problems. In the first application, we search for uniquely K_r-saturated graphs and find the list of uniquely K_4-saturated graphs on at most 12 vertices, supporting current conjectures for this problem. In the second application, we verifying the Edge Reconstruction Conjecture for all 2-connected graphs on at most 12 vertices. This technique can be easily extended to more problems concerning 2-connected graphs.Comment: 15 pages, 3 figures, 4 table

    Decremental Single-Source Reachability in Planar Digraphs

    Full text link
    In this paper we show a new algorithm for the decremental single-source reachability problem in directed planar graphs. It processes any sequence of edge deletions in O(nlog2nloglogn)O(n\log^2{n}\log\log{n}) total time and explicitly maintains the set of vertices reachable from a fixed source vertex. Hence, if all edges are eventually deleted, the amortized time of processing each edge deletion is only O(log2nloglogn)O(\log^2 n \log \log n), which improves upon a previously known O(n)O(\sqrt{n}) solution. We also show an algorithm for decremental maintenance of strongly connected components in directed planar graphs with the same total update time. These results constitute the first almost optimal (up to polylogarithmic factors) algorithms for both problems. To the best of our knowledge, these are the first dynamic algorithms with polylogarithmic update times on general directed planar graphs for non-trivial reachability-type problems, for which only polynomial bounds are known in general graphs

    An algebraic formulation of the graph reconstruction conjecture

    Get PDF
    The graph reconstruction conjecture asserts that every finite simple graph on at least three vertices can be reconstructed up to isomorphism from its deck - the collection of its vertex-deleted subgraphs. Kocay's Lemma is an important tool in graph reconstruction. Roughly speaking, given the deck of a graph GG and any finite sequence of graphs, it gives a linear constraint that every reconstruction of GG must satisfy. Let ψ(n)\psi(n) be the number of distinct (mutually non-isomorphic) graphs on nn vertices, and let d(n)d(n) be the number of distinct decks that can be constructed from these graphs. Then the difference ψ(n)d(n)\psi(n) - d(n) measures how many graphs cannot be reconstructed from their decks. In particular, the graph reconstruction conjecture is true for nn-vertex graphs if and only if ψ(n)=d(n)\psi(n) = d(n). We give a framework based on Kocay's lemma to study this discrepancy. We prove that if MM is a matrix of covering numbers of graphs by sequences of graphs, then d(n)rankR(M)d(n) \geq \mathsf{rank}_\mathbb{R}(M). In particular, all nn-vertex graphs are reconstructible if one such matrix has rank ψ(n)\psi(n). To complement this result, we prove that it is possible to choose a family of sequences of graphs such that the corresponding matrix MM of covering numbers satisfies d(n)=rankR(M)d(n) = \mathsf{rank}_\mathbb{R}(M).Comment: 12 pages, 2 figure
    corecore