4 research outputs found

    Interactive exploratory search for multi page search results

    Get PDF
    Modern information retrieval interfaces typically involve multiple pages of search results, and users who are recall minded or engaging in exploratory search using ad hoc queries are likely to access more than one page. Document rankings for such queries can be improved by allowing additional context to the query to be provided by the user herself using explicit ratings or implicit actions such as clickthroughs. Existing methods using this information usually involved detrimental UI changes that can lower user satisfaction. Instead, we propose a new feedback scheme that makes use of existing UIs and does not alter user's browsing behaviour; to maximise retrieval performance over multiple result pages, we propose a novel retrieval optimisation framework and show that the optimal ranking policy should choose a diverse, exploratory ranking to display on the first page. Then, a personalised re-ranking of the next pages can be generated based on the user's feedback from the first page. We show that document correlations used in result diversification have a significant impact on relevance feedback and its effectiveness over a search session. TREC evaluations demonstrate that our optimal rank strategy (including approximative Monte Carlo Sampling) can naturally optimise the trade-off between exploration and exploitation and maximise the overall user's satisfaction over time against a number of similar baselines. Copyright is held by the International World Wide Web Conference Committee (IW3C2)

    Approximating true relevance model in relevance feedback.

    Get PDF
    Relevance is an essential concept in information retrieval (IR) and relevance estimation is a fundamental IR task. It involves not only document relevance estimation, but also estimation of user's information need. Relevance-based language model aims to estimate a relevance model (i.e., a relevant query term distribution) from relevance feedback documents. The true relevance model should be generated from truly relevant documents. The ideal estimation of the true relevance model is expected to be not only effective in terms of mean retrieval performance (e.g., Mean Average Precision) over all the queries, but also stable in the sense that the performance is stable across different individual queries. In practice, however, in approximating/estimating the true relevance model, the improvement of retrieval effectiveness often sacrifices the retrieval stability, and vice versa. In this thesis, we propose to explore and analyze such effectiveness-stability tradeoff from a new perspective, i.e., the bias-variance tradeoff that is a fundamental theory in statistical estimation. We first formulate the bias, variance and the trade-off between them for retrieval performance as well as for query model estimation. We then analytically and empirically study a number of factors (e.g., query model complexity, query model combination, document weight smoothness and irrelevant documents removal) that can affect the bias and variance. Our study shows that the proposed bias-variance trade-off analysis can serve as an analytical framework for query model estimation. We then investigate in depth on two particular key factors: document weight smoothness and removal of irrelevant documents, in query model estimation, by proposing novel methods for document weight smoothing and irrelevance distribution separation, respectively. Systematic experimental evaluation on TREC collections shows that the proposed methods can improve both retrieval effectiveness and retrieval stability of query model estimation. In addition to the above main contributions, we also carry out initial exploration on two further directions: the formulation of bias-variance in personalization and looking at the query model estimation via a novel theoretical angle (i.e., Quantum theory) that has partially inspired our research

    Term selection in information retrieval

    Get PDF
    Systems trained on linguistically annotated data achieve strong performance for many language processing tasks. This encourages the idea that annotations can improve any language processing task if applied in the right way. However, despite widespread acceptance and availability of highly accurate parsing software, it is not clear that ad hoc information retrieval (IR) techniques using annotated documents and requests consistently improve search performance compared to techniques that use no linguistic knowledge. In many cases, retrieval gains made using language processing components, such as part-of-speech tagging and head-dependent relations, are offset by significant negative effects. This results in a minimal positive, or even negative, overall impact for linguistically motivated approaches compared to approaches that do not use any syntactic or domain knowledge. In some cases, it may be that syntax does not reveal anything of practical importance about document relevance. Yet without a convincing explanation for why linguistic annotations fail in IR, the intuitive appeal of search systems that ‘understand’ text can result in the repeated application, and mis-application, of language processing to enhance search performance. This dissertation investigates whether linguistics can improve the selection of query terms by better modelling the alignment process between natural language requests and search queries. It is the most comprehensive work on the utility of linguistic methods in IR to date. Term selection in this work focuses on identification of informative query terms of 1-3 words that both represent the semantics of a request and discriminate between relevant and non-relevant documents. Approaches to word association are discussed with respect to linguistic principles, and evaluated with respect to semantic characterization and discriminative ability. Analysis is organised around three theories of language that emphasize different structures for the identification of terms: phrase structure theory, dependency theory and lexicalism. The structures identified by these theories play distinctive roles in the organisation of language. Evidence is presented regarding the value of different methods of word association based on these structures, and the effect of method and term combinations. Two highly effective, novel methods for the selection of terms from verbose queries are also proposed and evaluated. The first method focuses on the semantic phenomenon of ellipsis with a discriminative filter that leverages diverse text features. The second method exploits a term ranking algorithm, PhRank, that uses no linguistic information and relies on a network model of query context. The latter focuses queries so that 1-5 terms in an unweighted model achieve better retrieval effectiveness than weighted IR models that use up to 30 terms. In addition, unlike models that use a weighted distribution of terms or subqueries, the concise terms identified by PhRank are interpretable by users. Evaluation with newswire and web collections demonstrates that PhRank-based query reformulation significantly improves performance of verbose queries up to 14% compared to highly competitive IR models, and is at least as good for short, keyword queries with the same models. Results illustrate that linguistic processing may help with the selection of word associations but does not necessarily translate into improved IR performance. Statistical methods are necessary to overcome the limits of syntactic parsing and word adjacency measures for ad hoc IR. As a result, probabilistic frameworks that discover, and make use of, many forms of linguistic evidence may deliver small improvements in IR effectiveness, but methods that use simple features can be substantially more efficient and equally, or more, effective. Various explanations for this finding are suggested, including the probabilistic nature of grammatical categories, a lack of homomorphism between syntax and semantics, the impact of lexical relations, variability in collection data, and systemic effects in language systems
    corecore