7,766 research outputs found

    4-bit Factorization Circuit Composed of Multiplier Units with Superconducting Flux Qubits toward Quantum Annealing

    Full text link
    Prime factorization (P = M*N) is considered to be a promising application in quantum computations. We perform 4-bit factorization in experiments using a superconducting flux qubit toward quantum annealing. Our proposed method uses a superconducting quantum circuit implementing a multiplier Hamiltonian, which provides combinations of M and N as a factorization solution after quantum annealing when the integer P is initially set. The circuit comprises multiple multiplier units combined with connection qubits. The key points are a native implementation of the multiplier Hamiltonian to the superconducting quantum circuit and its fabrication using a Nb multilayer process with a Josephson junction dedicated to the qubit. The 4-bit factorization circuit comprises 32 superconducting flux qubits. Our method has superior scalability because the Hamiltonian is implemented with fewer qubits than in conventional methods using a chimera graph architecture. We perform experiments at 10 mK to clarify the validity of interconnections of a multiplier unit using qubits. We demonstrate experiments at 4.2 K and simulations for the factorization of integers 4, 6, and 9.Comment: Main text (9 pages, 5 figures) and Appendix (8 pages, 7 figures). Submitted in IEEE Transactions on Applied Superconductivity (under review

    Neural System Identification with Spike-triggered Non-negative Matrix Factorization

    Get PDF
    Neuronal circuits formed in the brain are complex with intricate connection patterns. Such complexity is also observed in the retina as a relatively simple neuronal circuit. A retinal ganglion cell receives excitatory inputs from neurons in previous layers as driving forces to fire spikes. Analytical methods are required that can decipher these components in a systematic manner. Recently a method termed spike-triggered non-negative matrix factorization (STNMF) has been proposed for this purpose. In this study, we extend the scope of the STNMF method. By using the retinal ganglion cell as a model system, we show that STNMF can detect various computational properties of upstream bipolar cells, including spatial receptive field, temporal filter, and transfer nonlinearity. In addition, we recover synaptic connection strengths from the weight matrix of STNMF. Furthermore, we show that STNMF can separate spikes of a ganglion cell into a few subsets of spikes where each subset is contributed by one presynaptic bipolar cell. Taken together, these results corroborate that STNMF is a useful method for deciphering the structure of neuronal circuits.Comment: updated versio

    Discovering the roots: Uniform closure results for algebraic classes under factoring

    Full text link
    Newton iteration (NI) is an almost 350 years old recursive formula that approximates a simple root of a polynomial quite rapidly. We generalize it to a matrix recurrence (allRootsNI) that approximates all the roots simultaneously. In this form, the process yields a better circuit complexity in the case when the number of roots rr is small but the multiplicities are exponentially large. Our method sets up a linear system in rr unknowns and iteratively builds the roots as formal power series. For an algebraic circuit f(x1,,xn)f(x_1,\ldots,x_n) of size ss we prove that each factor has size at most a polynomial in: ss and the degree of the squarefree part of ff. Consequently, if f1f_1 is a 2Ω(n)2^{\Omega(n)}-hard polynomial then any nonzero multiple ifiei\prod_{i} f_i^{e_i} is equally hard for arbitrary positive eie_i's, assuming that ideg(fi)\sum_i \text{deg}(f_i) is at most 2O(n)2^{O(n)}. It is an old open question whether the class of poly(nn)-sized formulas (resp. algebraic branching programs) is closed under factoring. We show that given a polynomial ff of degree nO(1)n^{O(1)} and formula (resp. ABP) size nO(logn)n^{O(\log n)} we can find a similar size formula (resp. ABP) factor in randomized poly(nlognn^{\log n})-time. Consequently, if determinant requires nΩ(logn)n^{\Omega(\log n)} size formula, then the same can be said about any of its nonzero multiples. As part of our proofs, we identify a new property of multivariate polynomial factorization. We show that under a random linear transformation τ\tau, f(τx)f(\tau\overline{x}) completely factors via power series roots. Moreover, the factorization adapts well to circuit complexity analysis. This with allRootsNI are the techniques that help us make progress towards the old open problems, supplementing the large body of classical results and concepts in algebraic circuit factorization (eg. Zassenhaus, J.NT 1969, Kaltofen, STOC 1985-7 \& Burgisser, FOCS 2001).Comment: 33 Pages, No figure

    Sparse Matrix Factorization

    Full text link
    We investigate the problem of factorizing a matrix into several sparse matrices and propose an algorithm for this under randomness and sparsity assumptions. This problem can be viewed as a simplification of the deep learning problem where finding a factorization corresponds to finding edges in different layers and values of hidden units. We prove that under certain assumptions for a sparse linear deep network with nn nodes in each layer, our algorithm is able to recover the structure of the network and values of top layer hidden units for depths up to O~(n1/6)\tilde O(n^{1/6}). We further discuss the relation among sparse matrix factorization, deep learning, sparse recovery and dictionary learning.Comment: 20 page

    Small Extended Formulation for Knapsack Cover Inequalities from Monotone Circuits

    Full text link
    Initially developed for the min-knapsack problem, the knapsack cover inequalities are used in the current best relaxations for numerous combinatorial optimization problems of covering type. In spite of their widespread use, these inequalities yield linear programming (LP) relaxations of exponential size, over which it is not known how to optimize exactly in polynomial time. In this paper we address this issue and obtain LP relaxations of quasi-polynomial size that are at least as strong as that given by the knapsack cover inequalities. For the min-knapsack cover problem, our main result can be stated formally as follows: for any ε>0\varepsilon >0, there is a (1/ε)O(1)nO(logn)(1/\varepsilon)^{O(1)}n^{O(\log n)}-size LP relaxation with an integrality gap of at most 2+ε2+\varepsilon, where nn is the number of items. Prior to this work, there was no known relaxation of subexponential size with a constant upper bound on the integrality gap. Our construction is inspired by a connection between extended formulations and monotone circuit complexity via Karchmer-Wigderson games. In particular, our LP is based on O(log2n)O(\log^2 n)-depth monotone circuits with fan-in~22 for evaluating weighted threshold functions with nn inputs, as constructed by Beimel and Weinreb. We believe that a further understanding of this connection may lead to more positive results complementing the numerous lower bounds recently proved for extended formulations.Comment: 21 page
    corecore