88 research outputs found

    The Gram-Schmidt Walk: A Cure for the Banaszczyk Blues

    Get PDF
    A classic result of Banaszczyk (Random Str. & Algor. 1997) states that given any n vectors in Rm with ℓ2-norm at most 1 and any convex body K in Rm of Gaussian measure at least half, there exists a ±1 combination of these vectors that lies in 5K. Banaszczyk’s proof of this result was non-constructive and it was open how to find such a ±1 combination in polynomial time. In this paper, we give an efficient randomized algorithm to find a ±1 combination of the vectors which lies in cK for some fixed constant c > 0. This leads to new efficient algorithms for several problems in discrepancy theory

    An Lp Analog to AAK Theory for p⩾2

    Get PDF
    AbstractWe develop an Lp analog to AAK theory on the unit circle that interpolates continuously between the case p=∞, which classically solves for best uniform meromorphic approximation, and the case p=2, which is equivalent to H2-best rational approximation. We apply the results to the uniqueness problem in rational approximation and to the asymptotic behaviour of poles of best meromorphic approximants to functions with two branch points. As pointed out by a referee, part of the theory extends to every p∈[1, ∞] when the definition of the Hankel operator is suitably generalized; this we discuss in connection with the recent manuscript by V. A. Prokhorov, submitted for publication

    Online Discrepancy Minimization for Stochastic Arrivals

    Get PDF
    In the stochastic online vector balancing problem, vectors v1,v2,,vTv_1,v_2,\ldots,v_T chosen independently from an arbitrary distribution in Rn\mathbb{R}^n arrive one-by-one and must be immediately given a ±\pm sign. The goal is to keep the norm of the discrepancy vector, i.e., the signed prefix-sum, as small as possible for a given target norm. We consider some of the most well-known problems in discrepancy theory in the above online stochastic setting, and give algorithms that match the known offline bounds up to polylog(nT)\mathsf{polylog}(nT) factors. This substantially generalizes and improves upon the previous results of Bansal, Jiang, Singla, and Sinha (STOC' 20). In particular, for the Koml\'{o}s problem where vt21\|v_t\|_2\leq 1 for each tt, our algorithm achieves O~(1)\tilde{O}(1) discrepancy with high probability, improving upon the previous O~(n3/2)\tilde{O}(n^{3/2}) bound. For Tusn\'{a}dy's problem of minimizing the discrepancy of axis-aligned boxes, we obtain an O(logd+4T)O(\log^{d+4} T) bound for arbitrary distribution over points. Previous techniques only worked for product distributions and gave a weaker O(log2d+1T)O(\log^{2d+1} T) bound. We also consider the Banaszczyk setting, where given a symmetric convex body KK with Gaussian measure at least 1/21/2, our algorithm achieves O~(1)\tilde{O}(1) discrepancy with respect to the norm given by KK for input distributions with sub-exponential tails. Our key idea is to introduce a potential that also enforces constraints on how the discrepancy vector evolves, allowing us to maintain certain anti-concentration properties. For the Banaszczyk setting, we further enhance this potential by combining it with ideas from generic chaining. Finally, we also extend these results to the setting of online multi-color discrepancy
    corecore