262 research outputs found

    Algebraic matroids with graph symmetry

    Get PDF
    This paper studies the properties of two kinds of matroids: (a) algebraic matroids and (b) finite and infinite matroids whose ground set have some canonical symmetry, for example row and column symmetry and transposition symmetry. For (a) algebraic matroids, we expose cryptomorphisms making them accessible to techniques from commutative algebra. This allows us to introduce for each circuit in an algebraic matroid an invariant called circuit polynomial, generalizing the minimal poly- nomial in classical Galois theory, and studying the matroid structure with multivariate methods. For (b) matroids with symmetries we introduce combinatorial invariants capturing structural properties of the rank function and its limit behavior, and obtain proofs which are purely combinatorial and do not assume algebraicity of the matroid; these imply and generalize known results in some specific cases where the matroid is also algebraic. These results are motivated by, and readily applicable to framework rigidity, low-rank matrix completion and determinantal varieties, which lie in the intersection of (a) and (b) where additional results can be derived. We study the corresponding matroids and their associated invariants, and for selected cases, we characterize the matroidal structure and the circuit polynomials completely

    Algebras related to matroids represented in characteristic zero

    Get PDF
    Let k be a field of characteristic zero. We consider graded subalgebras A of k[x_1,...,x_m]/(x_1^2,...,x_m^2) generated by d linearly independant linear forms. Representations of matroids over k provide a natural description of the structure of these algebras. In return, the numerical properties of the Hilbert function of A yield some information about the Tutte polynomial of the corresponding matroid. Isomorphism classes of these algebras correspond to equivalence classes of hyperplane arrangements under the action of the general linear group.Comment: 11 pages AMS-LaTe

    Combinatorics of Toric Arrangements

    Full text link
    In this paper we build an Orlik-Solomon model for the canonical gradation of the cohomology algebra with integer coefficients of the complement of a toric arrangement. We give some results on the uniqueness of the representation of arithmetic matroids, in order to discuss how the Orlik-Solomon model depends on the poset of layers. The analysis of discriminantal toric arrangements permits us to isolate certain conditions under which two toric arrangements have diffeomorphic complements. We also give combinatorial conditions determining whether the cohomology algebra is generated in degree one.Comment: 29 pages, 1 figur

    Algebraic matroids with graph symmetry

    Get PDF
    This paper studies the properties of two kinds of matroids: (a) algebraic matroids and (b) finite and infinite matroids whose ground set have some canonical symmetry, for example row and column symmetry and transposition symmetry. For (a) algebraic matroids, we expose cryptomorphisms making them accessible to techniques from commutative algebra. This allows us to introduce for each circuit in an algebraic matroid an invariant called circuit polynomial, generalizing the minimal polynomial in classical Galois theory, and studying the matroid structure with multivariate methods. For (b) matroids with symmetries we introduce combinatorial invariants capturing structural properties of the rank function and its limit behavior, and obtain proofs which are purely combinatorial and do not assume algebraicity of the matroid; these imply and generalize known results in some specific cases where the matroid is also algebraic. These results are motivated by, and readily applicable to framework rigidity, low-rank matrix completion and determinantal varieties, which lie in the intersection of (a) and (b) where additional results can be derived. We study the corresponding matroids and their associated invariants, and for selected cases, we characterize the matroidal structure and the circuit polynomials completely

    Proto-exact categories of matroids, Hall algebras, and K-theory

    Full text link
    This paper examines the category Mat∙\mathbf{Mat}_{\bullet} of pointed matroids and strong maps from the point of view of Hall algebras. We show that Mat∙\mathbf{Mat}_{\bullet} has the structure of a finitary proto-exact category - a non-additive generalization of exact category due to Dyckerhoff-Kapranov. We define the algebraic K-theory K∗(Mat∙)K_* (\mathbf{Mat}_{\bullet}) of Mat∙\mathbf{Mat}_{\bullet} via the Waldhausen construction, and show that it is non-trivial, by exhibiting injections πns(S)↪Kn(Mat∙)\pi^s_n (\mathbb{S}) \hookrightarrow K_n (\mathbf{Mat}_{\bullet}) from the stable homotopy groups of spheres for all nn. Finally, we show that the Hall algebra of Mat∙\mathbf{Mat}_{\bullet} is a Hopf algebra dual to Schmitt's matroid-minor Hopf algebra.Comment: 29 page

    Matroids in OSCAR

    Full text link
    OSCAR is an innovative new computer algebra system which combines and extends the power of its four cornerstone systems - GAP (group theory), Singular (algebra and algebraic geometry), Polymake (polyhedral geometry), and Antic (number theory). Here, we present parts of the module handeling matroids in OSCAR, which will appear as a chapter of the upcoming OSCAR book. A matroid is a fundamental and actively studied object in combinatorics. Matroids generalize linear dependency in vector spaces as well as many aspects of graph theory. Moreover, matroids form a cornerstone of tropical geometry and a deep link between algebraic geometry and combinatorics. Our focus lies in particular on computing the realization space and the Chow ring of a matroid.Comment: 13 pages, 1 figur
    • …
    corecore