20,643 research outputs found

    Factor Graphs for Quantum Probabilities

    Full text link
    A factor-graph representation of quantum-mechanical probabilities (involving any number of measurements) is proposed. Unlike standard statistical models, the proposed representation uses auxiliary variables (state variables) that are not random variables. All joint probability distributions are marginals of some complex-valued function qq, and it is demonstrated how the basic concepts of quantum mechanics relate to factorizations and marginals of qq.Comment: To appear in IEEE Transactions on Information Theory, 201

    A Factor-Graph Representation of Probabilities in Quantum Mechanics

    Full text link
    A factor-graph representation of quantum-mechanical probabilities is proposed. Unlike standard statistical models, the proposed representation uses auxiliary variables (state variables) that are not random variables.Comment: Proc. IEEE International Symposium on Information Theory (ISIT), Cambridge, MA, July 1-6, 201

    Belief propagation decoding of quantum channels by passing quantum messages

    Full text link
    Belief propagation is a powerful tool in statistical physics, machine learning, and modern coding theory. As a decoding method, it is ubiquitous in classical error correction and has also been applied to stabilizer-based quantum error correction. The algorithm works by passing messages between nodes of the factor graph associated with the code and enables efficient decoding, in some cases even up to the Shannon capacity of the channel. Here we construct a belief propagation algorithm which passes quantum messages on the factor graph and is capable of decoding the classical-quantum channel with pure state outputs. This gives explicit decoding circuits whose number of gates is quadratic in the blocklength of the code. We also show that this decoder can be modified to work with polar codes for the pure state channel and as part of a polar decoder for transmitting quantum information over the amplitude damping channel. These represent the first explicit capacity-achieving decoders for non-Pauli channels.Comment: v3: final version for publication; v2: improved discussion of the algorithm; 7 pages & 2 figures. v1: 6 pages, 1 figur

    Form factor for large quantum graphs: evaluating orbits with time-reversal

    Full text link
    It has been shown that for a certain special type of quantum graphs the random-matrix form factor can be recovered to at least third order in the scaled time \tau using periodic-orbit theory. Two types of contributing pairs of orbits were identified, those which require time-reversal symmetry and those which do not. We present a new technique of dealing with contribution from the former type of orbits. The technique allows us to derive the third order term of the expansion for general graphs. Although the derivation is rather technical, the advantages of the technique are obvious: it makes the derivation tractable, it identifies explicitly the orbit configurations which give the correct contribution, it is more algorithmical and more system-independent, making possible future applications of the technique to systems other than quantum graphs.Comment: 25 pages, 14 figures, accepted to Waves in Random Media (special issue on Quantum Graphs and their Applications). Fixed typos, removed an overly restrictive condition (appendix), shortened introductory section

    Form factor for a family of quantum graphs: An expansion to third order

    Full text link
    For certain types of quantum graphs we show that the random-matrix form factor can be recovered to at least third order in the scaled time τ\tau from periodic-orbit theory. We consider the contributions from pairs of periodic orbits represented by diagrams with up to two self-intersections connected by up to four arcs and explain why all other diagrams are expected to give higher-order corrections only. For a large family of graphs with ergodic classical dynamics the diagrams that exist in the absence of time-reversal symmetry sum to zero. The mechanism for this cancellation is rather general which suggests that it may also apply at higher-orders in the expansion. This expectation is in full agreement with the fact that in this case the linear-τ\tau contribution, the diagonal approximation, already reproduces the random-matrix form factor for τ<1\tau<1. For systems with time-reversal symmetry there are more diagrams which contribute at third order. We sum these contributions for quantum graphs with uniformly hyperbolic dynamics, obtaining +2τ3+2\tau^{3}, in agreement with random-matrix theory. As in the previous calculation of the leading-order correction to the diagonal approximation we find that the third order contribution can be attributed to exceptional orbits representing the intersection of diagram classes.Comment: 23 pages (including 4 fig.) - numerous typos correcte

    Quantum-mechanical machinery for rational decision-making in classical guessing game

    Full text link
    In quantum game theory, one of the most intriguing and important questions is, "Is it possible to get quantum advantages without any modification of the classical game?" The answer to this question so far has largely been negative. So far, it has usually been thought that a change of the classical game setting appears to be unavoidable for getting the quantum advantages. However, we give an affirmative answer here, focusing on the decision-making process (we call 'reasoning') to generate the best strategy, which may occur internally, e.g., in the player's brain. To show this, we consider a classical guessing game. We then define a one-player reasoning problem in the context of the decision-making theory, where the machinery processes are designed to simulate classical and quantum reasoning. In such settings, we present a scenario where a rational player is able to make better use of his/her weak preferences due to quantum reasoning, without any altering or resetting of the classically defined game. We also argue in further analysis that the quantum reasoning may make the player fail, and even make the situation worse, due to any inappropriate preferences.Comment: 9 pages, 10 figures, The scenario is more improve
    corecore