1,549 research outputs found

    Facilitating the interaction with data warehouse schemas through a visual web-based approach

    Full text link
    In most respects, there are implicit drawbacks concerning representation and interaction with data in relational-database applications. On the one hand, there is a lack of expressiveness and ease of use in the user interfaces that handle such data. On the other hand, there is an implicit need for interactive end-user visual tools to query data and avoid dependency on programming languages. The main aim of this work is to study the problem of database interaction and usability, comparing existing solutions and providing a new approach that overcomes existing problems. We propose a web-based tool that manipulates Data Warehouse schemas by using a visual language to represent the database structure and providing several visualization techniques that facilitate the interaction and creation of queries involving different levels of complexity. We based our research on an End-User Development approach that has been evaluated to obtain some initial usability indicators

    The Web Science Observatory

    No full text
    To understand and enable the evolution of the Web and to help address grand societal challenges, the Web must be observable at scale across space and time. That requires a globally distributed and collaborative Web Observatory

    Phenotypic and genotypic data integration and exploration through a web-service architecture

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Linking genotypic and phenotypic information is one of the greatest challenges of current genetics research. The definition of an Information Technology infrastructure to support this kind of studies, and in particular studies aimed at the analysis of complex traits, which require the definition of multifaceted phenotypes and the integration genotypic information to discover the most prevalent diseases, is a paradigmatic goal of Biomedical Informatics. This paper describes the use of Information Technology methods and tools to develop a system for the management, inspection and integration of phenotypic and genotypic data.</p> <p>Results</p> <p>We present the design and architecture of the Phenotype Miner, a software system able to flexibly manage phenotypic information, and its extended functionalities to retrieve genotype information from external repositories and to relate it to phenotypic data. For this purpose we developed a module to allow customized data upload by the user and a SOAP-based communications layer to retrieve data from existing biomedical knowledge management tools. In this paper we also demonstrate the system functionality by an example application of the system in which we analyze two related genomic datasets.</p> <p>Conclusion</p> <p>In this paper we show how a comprehensive, integrated and automated workbench for genotype and phenotype integration can facilitate and improve the hypothesis generation process underlying modern genetic studies.</p

    A Semantic Framework Supporting Multilayer Networks Analysis for Rare Diseases

    Get PDF
    Understanding the role played by genetic variations in diseases, exploring genomic variants, and discovering disease-associated loci are among the most pressing challenges of genomic medicine. A huge and ever-increasing amount of information is available to researchers to address these challenges. Unfortunately, it is stored in fragmented ontologies and databases, which use heterogeneous formats and poorly integrated schemas. To overcome these limitations, the authors propose a linked data approach, based on the formalism of multilayer networks, able to integrate and harmonize biomedical information from multiple sources into a single dense network covering different aspects on Neuroendocrine Neoplasms (NENs). The proposed integration schema consists of three interconnected layers representing, respectively, information on the disease, on the affected genes, on the related biological processes and molecular functions. An easy-to-use client-server application was also developed to browse and search for information on the model supporting multilayer network analysis

    Visualisation and analysis of students’ interaction data in exploratory learning environments

    Get PDF
    Log files from adaptive Exploratory Learning Environments can contain prohibitively large quantities of data for visualisation and analysis. Moreover, it is hard to know in advance what data is required for analytical purposes. Using a microworld for secondary algebra as a case study, we discuss how students' interaction data can be transformed into a data warehouse in order to allow its visualisation and exploration using online analytical processing (OLAP) tools. We also present some additional, more targeted, visualisations of the students' interaction data. We demonstrate the possibilities that these visualisations provide for exploratory data analysis, enabling confirmation or contradiction of expectations that pedagogical experts may have about the system and ultimately providing both empirical evidence and insights for its further development

    Enabling quantitative data analysis through e-infrastructures

    Get PDF
    This paper discusses how quantitative data analysis in the social sciences can engage with and exploit an e-Infrastructure. We highlight how a number of activities which are central to quantitative data analysis, referred to as ‘data management’, can benefit from e-infrastructure support. We conclude by discussing how these issues are relevant to the DAMES (Data Management through e-Social Science) research Node, an ongoing project that aims to develop e-Infrastructural resources for quantitative data analysis in the social sciences

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research
    corecore