8,985 research outputs found

    Combining geoprocessing and interregional input-output systems: An application to the State of São Paulo in Brazil

    Get PDF
    This work develops a method for the construction of input-output systems capable of estimating the flows of goods and services among cities, having in view that the creation of accurate strategies depends on the regional peculiarities incorporated in the scope of the economic planning researches. The study innovates by combining geoprocessing with inputoutput theory elements, facilitating the interpretation of the information available on the extensive data set of interregional input-output systems. The analytical potential is showed through a panoramic evaluation of the São Paulo State supply and demand relations, and by the application of the estimated input-output system to a study of the regional impacts of the “Bolsa Familia” Program, an income transfer program from the Federal government. The results show that this program must be understood not only as a form of income transference, but also as a catalytic agent for decreasing the regional inequality inside the state.Input-Output; Geoprocessing; Regional Development; Brazil; São Paulo State

    Multi-technique approach to rockfall monitoring in the Montserrat massif (Catalonia, NE Spain)

    Get PDF
    Montserrat Mountain is located near Barcelona in Catalonia, in the northeast of Spain, and its massif is formed by conglomerate interleaved by siltstone/sandstone with steep slopes very prone to rockfalls. The increasing number of visitors in the monastery area, reaching 2.4 million per year, has highlighted the risk derived from rockfalls for this building area and also for the terrestrial accesses, both roads and the rack railway. A risk mitigation plan has been launched, and its first phase during 2014-2016 has been focused largely on testing several monitoring techniques for their later implementation. The results of the pilot tests, performed as a development from previous sparse experiences and data, are presented together with the first insights obtained. These tests combine four monitoring techniques under different conditions of continuity in space and time domains, which are: displacement monitoring with Ground-based Synthetic Aperture Radar and characterization at slope scale, with an extremely non-uniform atmospheric phase screen due to the stepped topography and atmosphere stratification; Terrestrial Laser Scanner surveys quantifying the frequency of small or even previously unnoticed rockfalls, and monitoring rock block centimetre scale displacements; the monitoring of rock joints implemented through a wireless sensor network with an ad hoc design of ZigBee loggers developed by ICGC; and, finally, monitoring singular rock needles with Total Station.Peer ReviewedPostprint (author's final draft

    The Cyborg Astrobiologist: Testing a Novelty-Detection Algorithm on Two Mobile Exploration Systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah

    Full text link
    (ABRIDGED) In previous work, two platforms have been developed for testing computer-vision algorithms for robotic planetary exploration (McGuire et al. 2004b,2005; Bartolo et al. 2007). The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone-camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon color, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone-camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colors to test this algorithm. The algorithm robustly recognized previously-observed units by their color, while requiring only a single image or a few images to learn colors as familiar, demonstrating its fast learning capability.Comment: 28 pages, 12 figures, accepted for publication in the International Journal of Astrobiolog

    An interpretable machine learning framework for measuring urban perceptions from panoramic street view images

    Get PDF
    The proliferation of street view images (SVIs) and the constant advancements in deep learning techniques have enabled urban analysts to extract and evaluate urban perceptions from large-scale urban streetscapes. However, many existing analytical frameworks have been found to lack interpretability due to their end-to-end structure and “black-box” nature, thereby limiting their value as a planning support tool. In this context, we propose a five-step machine learning framework for extracting neighborhood-level urban perceptions from panoramic SVIs, specifically emphasizing feature and result interpretability. By utilizing the MIT Place Pulse data, the developed framework can systematically extract six dimensions of urban perceptions from the given panoramas, including perceptions of wealth, boredom, depression, beauty, safety, and liveliness. The practical utility of this framework is demonstrated through its deployment in Inner London, where it was used to visualize urban perceptions at the Output Area (OA) level and to verify against real-world crime rate

    Image Stitching for UAV remote sensing application

    Get PDF
    The objective of the project is to write an algorithm that is able to join top view images to create a big map. The project is done in the School of Castelldefels of UPC, within the research laboratory Icarus of EETAC Faculty. The goal of the project is to detect an area of this map, thanks to the analysis of this images. The images are taken by the two camera aboard on an Unmanned Aerial Vehicle (UAV) built by the Icarus group leaded by Enric Pastor. The implemented code is uploaded in Upc' svn at the adress: https://svn.fib.upc.es/svn/vincenzo.can

    An interpretable machine learning framework for measuring urban perceptions from panoramic street view images

    Get PDF
    The proliferation of street view images (SVIs) and the constant advancements in deep learning techniques have enabled urban analysts to extract and evaluate urban perceptions from large-scale urban streetscapes. However, many existing analytical frameworks have been found to lack interpretability due to their end-to-end structure and "black-box" nature, thereby limiting their value as a planning support tool. In this context, we propose a five-step machine learning framework for extracting neighborhood-level urban perceptions from panoramic SVIs, specifically emphasizing feature and result interpretability. By utilizing the MIT Place Pulse data, the developed framework can systematically extract six dimensions of urban perceptions from the given panoramas, including perceptions of wealth, boredom, depression, beauty, safety, and liveliness. The practical utility of this framework is demonstrated through its deployment in Inner London, where it was used to visualize urban perceptions at the Output Area (OA) level and to verify against real-world crime rate
    corecore