1,879 research outputs found

    Evomimetics : the biomimetic design thinking 2.0

    Get PDF
    The consensus is that nature is a tremendous source of ideas for innovative designs that can meet various specific functional needs, relevant to society. Designs rely on structural, constructional, process-based and behavioral traits that all result from a natural trial-and-error cycle: evolution. Being one of the pillars of biomimicry, through billion years of evolution, nature has experimented and found what works and lasts, and what does not. Evidently, this has attracted scientists, especially engineers, trying to understand working natural designs, and translate them into applicable, working synthetic designs. The 'Biomimetic Design Method' forms the underlying conceptual framework to analytically decode biologically functions and designs. However, even though the evolutionary process is considered key to all this, it is generally overlooked in this conceptual thinking. The general assumption is that particular functions in organisms result from a natural selection process that optimized the underlying design for a particular function, thereby overlooking that an organism actually represents the possibly best compromise between all its functions needed to survive, to reproduce and to produce fit offspring. Many evolutionary processes thus yield suboptimal design components that, when put together, provide an optimized organismal design that manages to perform as good as needed, within a given environment. Such evolutionary limitations thus create possible pitfalls for bio-inspired design thinking. But, when considering them as a structural part of the design thinking process ('evomimetics'), they actually create opportunities for an improved translation of biology into optimally functioning designs. Using specific examples from evolutionary biology, these processes are explained, and recommendations are formulated

    Degeneracy: a link between evolvability, robustness and complexity in biological systems

    Get PDF
    A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability

    Specialization Can Drive the Evolution of Modularity

    Get PDF
    Organismal development and many cell biological processes are organized in a modular fashion, where regulatory molecules form groups with many interactions within a group and few interactions between groups. Thus, the activity of elements within a module depends little on elements outside of it. Modularity facilitates the production of heritable variation and of evolutionary innovations. There is no consensus on how modularity might evolve, especially for modules in development. We show that modularity can increase in gene regulatory networks as a byproduct of specialization in gene activity. Such specialization occurs after gene regulatory networks are selected to produce new gene activity patterns that appear in a specific body structure or under a specific environmental condition. Modules that arise after specialization in gene activity comprise genes that show concerted changes in gene activities. This and other observations suggest that modularity evolves because it decreases interference between different groups of genes. Our work can explain the appearance and maintenance of modularity through a mechanism that is not contingent on environmental change. We also show how modularity can facilitate co-option, the utilization of existing gene activity to build new gene activity patterns, a frequent feature of evolutionary innovations

    Computational Modelling of Plasticity-Led Evolution

    Full text link
    Plasticity-led evolution is a form of evolution where a change in the environment induces novel traits via phenotypic plasticity, after which the novel traits are genetically accommodated over generations under the novel environment. This mode of evolution is expected to resolve the problem of gradualism (i.e., evolution by the slow accumulation of mutations that induce phenotypic variation) implied by the Modern Evolutionary Synthesis, in the face of a large environmental change. While experimental works are essential for validating that plasticity-led evolution indeed happened, we need computational models to gain insight into its underlying mechanisms and make qualitative predictions. Such computational models should include the developmental process and gene-environment interactions in addition to genetics and natural selection. We point out that gene regulatory network models can incorporate all the above notions. In this review, we highlight results from computational modelling of gene regulatory networks that consolidate the criteria of plasticity-led evolution. Since gene regulatory networks are mathematically equivalent to artificial recurrent neural networks, we also discuss their analogies and discrepancies, which may help further understand the mechanisms underlying plasticity-led evolution.Comment: 20 pages, 2 tables, 1 bo

    Influence of Modularity and Regularity on Disparity of Atelostomata Sea Urchins

    Get PDF
    A modularity approach is used to study disparity rates and evolvability of sea urchins belonging to the Atelostomata superorder. For this purpose, the pentameric sea urchin architecture is partitioned into modular spatial components and the interference between modules is quantified using areas and a measurement of the regularity of the spatial partitions. This information is used to account for the variability through time (disparity) and potential for morphological variation and evolution (evolvability) in holasteroid echinoids. We obtain that regular partitions of the space produce modules with high modular integrity, whereas irregular partitions produce low modular integrity; the former ones are related with high morphological disparity (facilitation hypothesis). Our analysis also suggests that a pentameric body plan with low regularity rates in Atelostomata reflects a stronger modular integration among modules than within modules, which could favors bilaterality against radial symmetry. Our approach constitutes a theoretical platform to define and quantify spatial organization in partitions of the space that can be related to modules in a morphological analysis

    Contrasting patterns of RUNX2 repeat variations are associated with palate shape in phyllostomid bats and New World primates

    Get PDF
    Establishing the genetic basis that underlies craniofacial variability in natural populations is one of the main topics of evolutionary and developmental studies. One of the genes associated with mammal craniofacial variability is RUNX2, and in the present study we investigated the association between craniofacial length and width and RUNX2 across New World bats (Phyllostomidae) and primates (Catarrhini and Platyrrhini). Our results showed contrasting patterns of association between the glutamate/alanine ratios (Q/A ratio) and palate shape in these highly diverse groups. In phyllostomid bats, we found an association between shorter/broader faces and increase of the Q/A ratio. In New World monkeys (NWM) there was a positive correlation of increasing Q/A ratios to more elongated faces. Our findings reinforced the role of the Q/A ratio as a flexible genetic mechanism that would rapidly change the time of skull ossification throughout development. However, we propose a scenario in which the influence of this genetic adjustment system is indirect. The Q/A ratio would not lead to a specific phenotype, but throughout the history of a lineage, would act along with evolutionary constraints, as well as other genes, as a facilitator for adaptive morphological changes.Fil: Ferraz, Tiago. Universidade Federal do Rio Grande do Sul; Brasil. Universidade de Sao Paulo; BrasilFil: Rossoni, Daniela M.. Universidade de Sao Paulo; BrasilFil: Althoff, Sérgio L.. Universidade Regional de Blumenau; BrasilFil: Pissinatti, Alcides. Universidade Federal da Bahia; BrasilFil: Paixão Cortês, Vanessa R.. Centro de Primatologia do Rio de Janeiro; BrasilFil: Bortolini, María Cátira. Universidade Federal do Rio Grande do Sul; BrasilFil: González José, Rolando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; ArgentinaFil: Marroig, Gabriel. Universidade de Sao Paulo; BrasilFil: Salzano, Francisco M.. Universidade Federal do Rio Grande do Sul; BrasilFil: Gonçalves, Gislene L.. Universidad de Tarapacá de Arica; Chile. Universidade Federal do Rio Grande do Sul; BrasilFil: Hünemeier, Tábita. Universidade de Sao Paulo; Brasi
    corecore