289 research outputs found

    waveSLAM: Empowering accurate indoor mapping using off-the-shelf millimeter-wave self-sensing

    Get PDF
    Proceedings of: 2023 IEEE 98th Vehicular Technology Conference: VTC2023-Fall, 10-13 October 2023, Hong Kong.This paper presents the design, implementation and evaluation of waveSLAM, a low-cost mobile robot system that uses the millimetre wave (mmWave) communication devices to enhance the indoor mapping process targeting environments with reduced visibility or glass/mirror walls. A unique feature of waveSLAM is that it only leverages existing Commercial-Off-The-Shelf (COTS) hardware (Lidar and mmWave radios) that are mounted on mobile robots to improve the accurate indoor mapping achieved with optical sensors. The key intuition behind the waveSLAM design is that while the mobile robots moves freely, the mmWave radios can periodically exchange angle and distance estimates between themselves (self-sensing) by bouncing the signal from the environment, thus enabling accurate estimates of the target object/material surface. Our experiments verify that waveSLAM can archive cm-level accuracy with errors below 22 cm and 20◦ in angle orientation which is compatible with Lidar when building indoor maps.This work has been partially funded by the European Union's Horizon Europe research and innovation program under grant agreement No 101095759 (Hexa-X-II) and the Spanish Ministry of Economic Affairs and Digital Transformation and the European Union-Next Generation EU through the UNICO 5G I+D 6G-EDGEDT

    Slocalization: Sub-{\mu}W Ultra Wideband Backscatter Localization

    Full text link
    Ultra wideband technology has shown great promise for providing high-quality location estimation, even in complex indoor multipath environments, but existing ultra wideband systems require tens to hundreds of milliwatts during operation. Backscatter communication has demonstrated the viability of astonishingly low-power tags, but has thus far been restricted to narrowband systems with low localization resolution. The challenge to combining these complimentary technologies is that they share a compounding limitation, constrained transmit power. Regulations limit ultra wideband transmissions to just -41.3 dBm/MHz, and a backscatter device can only reflect the power it receives. The solution is long-term integration of this limited power, lifting the initially imperceptible signal out of the noise. This integration only works while the target is stationary. However, stationary describes the vast majority of objects, especially lost ones. With this insight, we design Slocalization, a sub-microwatt, decimeter-accurate localization system that opens a new tradeoff space in localization systems and realizes an energy, size, and cost point that invites the localization of every thing. To evaluate this concept, we implement an energy-harvesting Slocalization tag and find that Slocalization can recover ultra wideband backscatter in under fifteen minutes across thirty meters of space and localize tags with a mean 3D Euclidean error of only 30 cm.Comment: Published at the 17th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN'18

    Reconfigurable Intelligent Surfaces for Rich Scattering Wireless Communications: Recent Experiments, Challenges, and Opportunities

    Full text link
    Recent advances in the fabrication and experimentation of Reconfigurable Intelligent Surfaces (RISs) have motivated the concept of the smart radio environment, according to which the propagation of information-bearing waveforms in the wireless medium is amenable to programmability. Although the vast majority of recent experimental research on RIS-empowered wireless communications gravitates around narrowband beamforming in quasi-free space, RISs are foreseen to revolutionize wideband wireless connectivity in dense urban as well as indoor scenarios, which are usually characterized as strongly reverberant environments exhibiting severe multipath conditions. In this article, capitalizing on recent physics-driven experimental explorations of RIS-empowered wave propagation control in complex scattering cavities, we identify the potential of the spatiotemporal control offered by RISs to boost wireless communications in rich scattering channels via two case studies. First, an RIS is deployed to shape the multipath channel impulse response, which is shown to enable higher achievable communication rates. Second, the RIS-tunable propagation environment is leveraged as an analog multiplexer to localize non-cooperative objects using wave fingerprints, even when they are outside the line of sight. Future research challenges and opportunities in the algorithmic design and experimentation of smart rich scattering wireless environments enabled by RISs for sixth Generation (6G) wireless communications are discussed.Comment: 7 pages, 5 figures, submitted to an IEEE Magazin

    Dense and long-term monitoring of Earth surface processes with passive RFID -- a review

    Full text link
    Billions of Radio-Frequency Identification (RFID) passive tags are produced yearly to identify goods remotely. New research and business applications are continuously arising, including recently localization and sensing to monitor earth surface processes. Indeed, passive tags can cost 10 to 100 times less than wireless sensors networks and require little maintenance, facilitating years-long monitoring with ten's to thousands of tags. This study reviews the existing and potential applications of RFID in geosciences. The most mature application today is the study of coarse sediment transport in rivers or coastal environments, using tags placed into pebbles. More recently, tag localization was used to monitor landslide displacement, with a centimetric accuracy. Sensing tags were used to detect a displacement threshold on unstable rocks, to monitor the soil moisture or temperature, and to monitor the snowpack temperature and snow water equivalent. RFID sensors, available today, could monitor other parameters, such as the vibration of structures, the tilt of unstable boulders, the strain of a material, or the salinity of water. Key challenges for using RFID monitoring more broadly in geosciences include the use of ground and aerial vehicles to collect data or localize tags, the increase in reading range and duration, the ability to use tags placed under ground, snow, water or vegetation, and the optimization of economical and environmental cost. As a pattern, passive RFID could fill a gap between wireless sensor networks and manual measurements, to collect data efficiently over large areas, during several years, at high spatial density and moderate cost.Comment: Invited paper for Earth Science Reviews. 50 pages without references. 31 figures. 8 table

    An inclusive survey of contactless wireless sensing: a technology used for remotely monitoring vital signs has the potential to combating COVID-19

    Get PDF
    With the Coronavirus pandemic showing no signs of abating, companies and governments around the world are spending millions of dollars to develop contactless sensor technologies that minimize the need for physical interactions between the patient and healthcare providers. As a result, healthcare research studies are rapidly progressing towards discovering innovative contactless technologies, especially for infants and elderly people who are suffering from chronic diseases that require continuous, real-time control, and monitoring. The fusion between sensing technology and wireless communication has emerged as a strong research candidate choice because wearing sensor devices is not desirable by patients as they cause anxiety and discomfort. Furthermore, physical contact exacerbates the spread of contagious diseases which may lead to catastrophic consequences. For this reason, research has gone towards sensor-less or contactless technology, through sending wireless signals, then analyzing and processing the reflected signals using special techniques such as frequency modulated continuous wave (FMCW) or channel state information (CSI). Therefore, it becomes easy to monitor and measure the subject’s vital signs remotely without physical contact or asking them to wear sensor devices. In this paper, we overview and explore state-of-the-art research in the field of contactless sensor technology in medicine, where we explain, summarize, and classify a plethora of contactless sensor technologies and techniques with the highest impact on contactless healthcare. Moreover, we overview the enabling hardware technologies as well as discuss the main challenges faced by these systems.This work is funded by the scientific and technological research council of Turkey (TÜBITAK) under grand 119E39

    Energy-Sustainable IoT Connectivity: Vision, Technological Enablers, Challenges, and Future Directions

    Full text link
    Technology solutions must effectively balance economic growth, social equity, and environmental integrity to achieve a sustainable society. Notably, although the Internet of Things (IoT) paradigm constitutes a key sustainability enabler, critical issues such as the increasing maintenance operations, energy consumption, and manufacturing/disposal of IoT devices have long-term negative economic, societal, and environmental impacts and must be efficiently addressed. This calls for self-sustainable IoT ecosystems requiring minimal external resources and intervention, effectively utilizing renewable energy sources, and recycling materials whenever possible, thus encompassing energy sustainability. In this work, we focus on energy-sustainable IoT during the operation phase, although our discussions sometimes extend to other sustainability aspects and IoT lifecycle phases. Specifically, we provide a fresh look at energy-sustainable IoT and identify energy provision, transfer, and energy efficiency as the three main energy-related processes whose harmonious coexistence pushes toward realizing self-sustainable IoT systems. Their main related technologies, recent advances, challenges, and research directions are also discussed. Moreover, we overview relevant performance metrics to assess the energy-sustainability potential of a certain technique, technology, device, or network and list some target values for the next generation of wireless systems. Overall, this paper offers insights that are valuable for advancing sustainability goals for present and future generations.Comment: 25 figures, 12 tables, submitted to IEEE Open Journal of the Communications Societ
    • …
    corecore