61 research outputs found

    A spatial-temporal framework based on histogram of gradients and optical flow for facial expression recognition in video sequences

    Get PDF
    Facial expression causes different parts of the facial region to change over time and thus dynamic descriptors are inherently more suitable than static descriptors for recognising facial expressions. In this paper, we extend the spatial pyramid histogram of gradients to spatio-temporal domain to give 3-dimensional facial features and integrate them with dense optical flow to give a spatio-temporal descriptor which extracts both the spatial and dynamic motion information of facial expressions. A multi-class support vector machine based classifier with one-to-one strategy is used to recognise facial expressions. Experiments on the CK+ and MMI datasets using leave-one-out cross validation scheme demonstrate that the integrated framework achieves a better performance than using individual descriptor separately. Compared with six state of the art methods, the proposed framework demonstrates a superior performance

    Facial expression recognition in the wild : from individual to group

    Get PDF
    The progress in computing technology has increased the demand for smart systems capable of understanding human affect and emotional manifestations. One of the crucial factors in designing systems equipped with such intelligence is to have accurate automatic Facial Expression Recognition (FER) methods. In computer vision, automatic facial expression analysis is an active field of research for over two decades now. However, there are still a lot of questions unanswered. The research presented in this thesis attempts to address some of the key issues of FER in challenging conditions mentioned as follows: 1) creating a facial expressions database representing real-world conditions; 2) devising Head Pose Normalisation (HPN) methods which are independent of facial parts location; 3) creating automatic methods for the analysis of mood of group of people. The central hypothesis of the thesis is that extracting close to real-world data from movies and performing facial expression analysis on movies is a stepping stone in the direction of moving the analysis of faces towards real-world, unconstrained condition. A temporal facial expressions database, Acted Facial Expressions in the Wild (AFEW) is proposed. The database is constructed and labelled using a semi-automatic process based on closed caption subtitle based keyword search. Currently, AFEW is the largest facial expressions database representing challenging conditions available to the research community. For providing a common platform to researchers in order to evaluate and extend their state-of-the-art FER methods, the first Emotion Recognition in the Wild (EmotiW) challenge based on AFEW is proposed. An image-only based facial expressions database Static Facial Expressions In The Wild (SFEW) extracted from AFEW is proposed. Furthermore, the thesis focuses on HPN for real-world images. Earlier methods were based on fiducial points. However, as fiducial points detection is an open problem for real-world images, HPN can be error-prone. A HPN method based on response maps generated from part-detectors is proposed. The proposed shape-constrained method does not require fiducial points and head pose information, which makes it suitable for real-world images. Data from movies and the internet, representing real-world conditions poses another major challenge of the presence of multiple subjects to the research community. This defines another focus of this thesis where a novel approach for modeling the perception of mood of a group of people in an image is presented. A new database is constructed from Flickr based on keywords related to social events. Three models are proposed: averaging based Group Expression Model (GEM), Weighted Group Expression Model (GEM_w) and Augmented Group Expression Model (GEM_LDA). GEM_w is based on social contextual attributes, which are used as weights on each person's contribution towards the overall group's mood. Further, GEM_LDA is based on topic model and feature augmentation. The proposed framework is applied to applications of group candid shot selection and event summarisation. The application of Structural SIMilarity (SSIM) index metric is explored for finding similar facial expressions. The proposed framework is applied to the problem of creating image albums based on facial expressions, finding corresponding expressions for training facial performance transfer algorithms

    Combining perceptual features with diffusion distance for face recognition

    Get PDF

    A ROBUST GA/KNN BASED HYPOTHESIS VERIFICATION SYSTEM FOR VEHICLE DETECTION

    Get PDF
    ABSTRACT Vehicle detection is an important issue in driver assistance systems and self-guided vehicles that include

    Spatio-temporal framework on facial expression recognition.

    Get PDF
    This thesis presents an investigation into two topics that are important in facial expression recognition: how to employ the dynamic information from facial expression image sequences and how to efficiently extract context and other relevant information of different facial regions. This involves the development of spatio-temporal frameworks for recognising facial expression. The thesis proposed three novel frameworks for recognising facial expression. The first framework uses sparse representation to extract features from patches of a face to improve the recognition performance, where part-based methods which are robust to image alignment are applied. In addition, the use of sparse representation reduces the dimensionality of features, and improves the semantic meaning and represents a face image more efficiently. Since a facial expression involves a dynamic process, and the process contains information that describes a facial expression more effectively, it is important to capture such dynamic information so as to recognise facial expressions over the entire video sequence. Thus, the second framework uses two types of dynamic information to enhance the recognition: a novel spatio-temporal descriptor based on PHOG (pyramid histogram of gradient) to represent changes in facial shape, and dense optical flow to estimate the movement (displacement) of facial landmarks. The framework views an image sequence as a spatio-temporal volume, and uses temporal information to represent the dynamic movement of facial landmarks associated with a facial expression. Specifically, spatial based descriptor representing spatial local shape is extended to spatio-temporal domain to capture the changes in local shape of facial sub-regions in the temporal dimension to give 3D facial component sub-regions of forehead, mouth, eyebrow and nose. The descriptor of optical flow is also employed to extract the information of temporal. The fusion of these two descriptors enhance the dynamic information and achieves better performance than the individual descriptors. The third framework also focuses on analysing the dynamics of facial expression sequences to represent spatial-temporal dynamic information (i.e., velocity). Two types of features are generated: a spatio-temporal shape representation to enhance the local spatial and dynamic information, and a dynamic appearance representation. In addition, an entropy-based method is introduced to provide spatial relationship of different parts of a face by computing the entropy value of different sub-regions of a face

    Object Detection using Dimensionality Reduction on Image Descriptors

    Get PDF
    The aim of object detection is to recognize objects in a visual scene. Performing reliable object detection is becoming increasingly important in the fields of computer vision and robotics. Various applications of object detection include video surveillance, traffic monitoring, digital libraries, navigation, human computer interaction, etc. The challenges involved with detecting real world objects include the multitude of colors, textures, sizes, and cluttered or complex backgrounds making objects difficult to detect. This thesis contributes to the exploration of various dimensionality reduction techniques on descriptors for establishing an object detection system that achieves the best trade-offs between performance and speed. Histogram of Oriented Gradients (HOG) and other histogram-based descriptors were used as an input to a Support Vector Machine (SVM) classifier to achieve good classification performance. Binary descriptors were considered as a computationally efficient alternative to HOG. It was determined that single local binary descriptors in combination with Support Vector Machine (SVM) classifier don\u27t work as well as histograms of features for object detection. Thus, histogram of binary descriptors features were explored as a viable alternative and the results were found to be comparable to those of the popular Histogram of Oriented Gradients descriptor. Histogram-based descriptors can be high dimensional and working with large amounts of data can be computationally expensive and slow. Thus, various dimensionality reduction techniques were considered, such as principal component analysis (PCA), which is the most widely used technique, random projections, which is data independent and fast to compute, unsupervised locality preserving projections (LPP), and supervised locality preserving projections (SLPP), which incorporate non-linear reduction techniques. The classification system was tested on eye detection as well as different object classes. The eye database was created using BioID and FERET databases. Additionally, the CalTech-101 data set, which has 101 object categories, was used to evaluate the system. The results showed that the reduced-dimensionality descriptors based on SLPP gave improved classification performance with fewer computations
    • …
    corecore