1,634 research outputs found

    Facial image super resolution using sparse representation for improving face recognition in surveillance monitoring

    Get PDF
    Due to importance of security in the society, monitoring activities and recognizing specific people through surveillance video camera is playing an important role. One of the main issues in such activity rises from the fact that cameras do not meet the resolution requirement for many face recognition algorithm. In order to solve this issue, in this paper we are proposing a new system which super resolve the image using sparse representation with the specific dictionary involving many natural and facial images followed by Hidden Markov Model and Support vector machine based face recognition. The proposed system has been tested on many well-known face databases such as FERET, HeadPose, and Essex University databases as well as our recently introduced iCV Face Recognition database (iFRD). The experimental results shows that the recognition rate is increasing considerably after apply the super resolution by using facial and natural image dictionary

    UG^2: a Video Benchmark for Assessing the Impact of Image Restoration and Enhancement on Automatic Visual Recognition

    Full text link
    Advances in image restoration and enhancement techniques have led to discussion about how such algorithmscan be applied as a pre-processing step to improve automatic visual recognition. In principle, techniques like deblurring and super-resolution should yield improvements by de-emphasizing noise and increasing signal in an input image. But the historically divergent goals of the computational photography and visual recognition communities have created a significant need for more work in this direction. To facilitate new research, we introduce a new benchmark dataset called UG^2, which contains three difficult real-world scenarios: uncontrolled videos taken by UAVs and manned gliders, as well as controlled videos taken on the ground. Over 160,000 annotated frames forhundreds of ImageNet classes are available, which are used for baseline experiments that assess the impact of known and unknown image artifacts and other conditions on common deep learning-based object classification approaches. Further, current image restoration and enhancement techniques are evaluated by determining whether or not theyimprove baseline classification performance. Results showthat there is plenty of room for algorithmic innovation, making this dataset a useful tool going forward.Comment: Supplemental material: https://goo.gl/vVM1xe, Dataset: https://goo.gl/AjA6En, CVPR 2018 Prize Challenge: ug2challenge.or

    Valvekaameratel põhineva inimseire täiustamine pildi resolutsiooni parandamise ning näotuvastuse abil

    Get PDF
    Due to importance of security in the society, monitoring activities and recognizing specific people through surveillance video camera is playing an important role. One of the main issues in such activity rises from the fact that cameras do not meet the resolution requirement for many face recognition algorithms. In order to solve this issue, in this work we are proposing a new system which super resolve the image. First, we are using sparse representation with the specific dictionary involving many natural and facial images to super resolve images. As a second method, we are using deep learning convulutional network. Image super resolution is followed by Hidden Markov Model and Singular Value Decomposition based face recognition. The proposed system has been tested on many well-known face databases such as FERET, HeadPose, and Essex University databases as well as our recently introduced iCV Face Recognition database (iCV-F). The experimental results shows that the recognition rate is increasing considerably after applying the super resolution by using facial and natural image dictionary. In addition, we are also proposing a system for analysing people movement on surveillance video. People including faces are detected by using Histogram of Oriented Gradient features and Viola-jones algorithm. Multi-target tracking system with discrete-continuouos energy minimization tracking system is then used to track people. The tracking data is then in turn used to get information about visited and passed locations and face recognition results for tracked people

    Vedel-objektiiv abil salvestatud kaugseire piltide analüüs kasutades super-resolutsiooni meetodeid

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneKäesolevas doktoritöös uuriti nii riist- kui ka tarkvaralisi lahendusi piltide töötlemiseks. Riist¬varalise poole pealt pakuti lahenduseks uudset vedelläätse, milles on dielekt¬rilisest elastomeerist kihilise täituriga membraan otse optilisel teljel. Doktoritöö käigus arendati välja kaks prototüüpi kahe erineva dielektrilisest elastomeerist ki¬hilise täituriga, mille aktiivne ala oli ühel juhul 40 ja teisel 20 mm. Läätse töö vas¬tas elastomeeri deformatsiooni mehaanikale ja suhtelistele muutustele fookuskau¬guses. Muutuste demonstreerimiseks meniskis ja läätse fookuskauguse mõõtmiseks kasutati laserkiirt. Katseandmetest selgub, et muutuste tekitamiseks on vajalik pinge vahemikus 50 kuni 750 volti. Tarkvaralise poole pealt pakuti uut satelliitpiltide parandamise süsteemi. Paku¬tud süsteem jagas mürase sisendpildi DT-CWT laineteisenduse abil mitmeteks sagedusalamribadeks. Pärast müra eemaldamist LA-BSF funktsiooni abil suu¬rendati pildi resolutsiooni DWT-ga ja kõrgsagedusliku alamriba piltide interpo¬leerimisega. Interpoleerimise faktor algsele pildile oli pool sellest, mida kasutati kõrgsagedusliku alamriba piltide interpoleerimisel ning superresolutsiooniga pilt rekonst¬rueeriti IDWT abil. Käesolevas doktoritöös pakuti tarkvaraliseks lahenduseks uudset sõnastiku baasil töötavat super-resolutsiooni (SR) meetodit, milles luuakse paarid suure resolutsiooniga (HR) ja madala resolut-siooniga (LR) piltidest. Kõigepealt jagati vastava sõnastiku loomiseks HR ja LR paarid omakorda osadeks. Esialgse HR kujutise saamiseks LR sisendpildist kombineeriti HR osi. HR osad valiti sõnastikust nii, et neile vastavad LR osad oleksid võimalikult lähedased sisendiks olevale LR pil¬dile. Iga valitud HR osa heledust korrigeeriti, et vähendada kõrvuti asuvate osade heleduse erine¬vusi superresolutsiooniga pildil. Plokkide efekti vähendamiseks ar¬vutati saadud SR pildi keskmine ning bikuupinterpolatsiooni pilt. Lisaks pakuti käesolevas doktoritöös välja kernelid, mille tulemusel on võimalik saadud SR pilte teravamaks muuta. Pakutud kernelite tõhususe tõestamiseks kasutati [83] ja [50] poolt pakutud resolutsiooni parandamise meetodeid. Superreso¬lutsiooniga pilt saadi iga kerneli tehtud HR pildi kombineerimise teel alpha blen¬dingu meetodit kasutades. Pakutud meetodeid ja kerneleid võrreldi erinevate tavaliste ja kaasaegsete meetoditega. Kvantita-tiivsetest katseandmetest ja saadud piltide kvaliteedi visuaal¬sest hindamisest selgus, et pakutud meetodid on tavaliste kaasaegsete meetoditega võrreldes paremad.In this thesis, a study of both hardware and software solutions for image enhance¬ment has been done. On the hardware side, a new liquid lens design with a DESA membrane located directly in the optical path has been demonstrated. Two pro¬totypes with two different DESA, which have a 40 and 20 mm active area in diameter, were developed. The lens performance was consistent with the mechan¬ics of elastomer deformation and relative focal length changes. A laser beam was used to show the change in the meniscus and to measure the focal length of the lens. The experimental results demonstrate that voltage in the range of 50 to 750 V is required to create change in the meniscus. On the software side, a new satellite image enhancement system was proposed. The proposed technique decomposed the noisy input image into various frequency subbands by using DT-CWT. After removing the noise by applying the LA-BSF technique, its resolution was enhanced by employing DWT and interpolating the high-frequency subband images. An original image was interpolated with half of the interpolation factor used for interpolating the high-frequency subband images, and the super-resolved image was reconstructed by using IDWT. A novel single-image SR method based on a generating dictionary from pairs of HR and their corresponding LR images was proposed. Firstly, HR and LR pairs were divided into patches in order to make HR and LR dictionaries respectively. The initial HR representation of an input LR image was calculated by combining the HR patches. These HR patches are chosen from the HR dictionary corre-sponding to the LR patches that have the closest distance to the patches of the in¬put LR image. Each selected HR patch was processed further by passing through an illumination enhancement processing order to reduce the noticeable change of illumination between neighbor patches in the super-resolved image. In order to reduce the blocking effect, the average of the obtained SR image and the bicubic interpolated image was calculated. The new kernels for sampling have also been proposed. The kernels can improve the SR by resulting in a sharper image. In order to demonstrate the effectiveness of the proposed kernels, the techniques from [83] and [50] for resolution enhance¬ment were adopted. The super-resolved image was achieved by combining the HR images produced by each of the proposed kernels using the alpha blending tech-nique. The proposed techniques and kernels are compared with various conventional and state-of-the-art techniques, and the quantitative test results and visual results on the final image quality show the superiority of the proposed techniques and ker¬nels over conventional and state-of-art technique

    Reducible Dictionaries for Single Image Super-Resolution based on Patch Matching and Mean Shifting

    Get PDF
    A single-image super-resolution (SR) method is proposed. The proposed method uses a generated dictionary from pairs of high resolution (HR) images and their corresponding low resolution (LR) representations. First, HR images and the corresponding LR ones are divided into patches of HR and LR, respectively, and then they are collected into separate dictionaries. Afterward, when performing SR, the distance between every patch of the input LR image and those of available LR patches in the LR dictionary is calculated. The minimum distance between the input LR patch and those in the LR dictionary is taken, and its counterpart from the HR dictionary is passed through an illumination enhancement process. By this technique, the noticeable change of illumination between neighbor patches in the super-resolved image is significantly reduced. The enhanced HR patch represents the HR patch of the super-resolved image. Finally, to remove the blocking effect caused by merging the patches, an average of the obtained HR image and the interpolated image obtained using bicubic interpolation is calculated. The quantitative and qualitative analyses show the superiority of the proposed technique over the conventional and state-of-art methods
    corecore