1,500 research outputs found

    3-D facial expression representation using B-spline statistical shape model

    Get PDF
    Effective representation and recognition of human faces are essential in a number of applications including human-computer interaction (HCI), bio-metrics or video conferencing. This paper presents initial results obtained for a novel method of 3-D facial expressions representation based on the shape space vector of the statistical shape model. The statistical shape model is constructed based on the control points of the B-spline surfaces of the train-ing data set. The model fitting for the data is achieved by a modified iterative closest point (ICP) method with the surface deformations restricted to the es-timated shape space. The proposed method is fully automated and tested on the synthetic 3-D facial data with various facial expressions. Experimental results show that the proposed 3-D facial expression representation can be potentially used for practical applications

    Sparse and Unique Nonnegative Matrix Factorization Through Data Preprocessing

    Full text link
    Nonnegative matrix factorization (NMF) has become a very popular technique in machine learning because it automatically extracts meaningful features through a sparse and part-based representation. However, NMF has the drawback of being highly ill-posed, that is, there typically exist many different but equivalent factorizations. In this paper, we introduce a completely new way to obtaining more well-posed NMF problems whose solutions are sparser. Our technique is based on the preprocessing of the nonnegative input data matrix, and relies on the theory of M-matrices and the geometric interpretation of NMF. This approach provably leads to optimal and sparse solutions under the separability assumption of Donoho and Stodden (NIPS, 2003), and, for rank-three matrices, makes the number of exact factorizations finite. We illustrate the effectiveness of our technique on several image datasets.Comment: 34 pages, 11 figure

    Multi-view passive 3D face acquisition device

    Get PDF
    Approaches to acquisition of 3D facial data include laser scanners, structured light devices and (passive) stereo vision. The laser scanner and structured light methods allow accurate reconstruction of the 3D surface but strong light is projected on the faces of subjects. Passive stereo vision based approaches do not require strong light to be projected, however, it is hard to obtain comparable accuracy and robustness of the surface reconstruction. In this paper a passive multiple view approach using 5 cameras in a ’+’ configuration is proposed that significantly increases robustness and accuracy relative to traditional stereo vision approaches. The normalised cross correlations of all 5 views are combined using direct projection of points instead of the traditionally used rectified images. Also, errors caused by different perspective deformation of the surface in the different views are reduced by using an iterative reconstruction technique where the depth estimation of the previous iteration is used to warp the windows of the normalised cross correlation for the different views

    The implementation of a disambiguation marching cubes algorithm

    Get PDF
    This thesis first systematically analyzes a classic surface generation algorithm, the marching cubes algorithm, in computer volume visualization, with emphasis on the mathematical background and the ambiguity problem of the algorithm. A simple and elegant disambiguation algorithm is then described and implemented. Finally, generated data from mathematical functions and real world data from scientific experiment are used to test the original marching cubes algorithm and the disambiguation algorithm

    Extreme 3D Face Reconstruction: Seeing Through Occlusions

    Full text link
    Existing single view, 3D face reconstruction methods can produce beautifully detailed 3D results, but typically only for near frontal, unobstructed viewpoints. We describe a system designed to provide detailed 3D reconstructions of faces viewed under extreme conditions, out of plane rotations, and occlusions. Motivated by the concept of bump mapping, we propose a layered approach which decouples estimation of a global shape from its mid-level details (e.g., wrinkles). We estimate a coarse 3D face shape which acts as a foundation and then separately layer this foundation with details represented by a bump map. We show how a deep convolutional encoder-decoder can be used to estimate such bump maps. We further show how this approach naturally extends to generate plausible details for occluded facial regions. We test our approach and its components extensively, quantitatively demonstrating the invariance of our estimated facial details. We further provide numerous qualitative examples showing that our method produces detailed 3D face shapes in viewing conditions where existing state of the art often break down.Comment: Accepted to CVPR'18. Previously titled: "Extreme 3D Face Reconstruction: Looking Past Occlusions

    Subset Warping: Rubber Sheeting with Cuts

    Full text link
    Image warping, often referred to as "rubber sheeting" represents the deformation of a domain image space into a range image space. In this paper, a technique is described which extends the definition of a rubber-sheet transformation to allow a polygonal region to be warped into one or more subsets of itself, where the subsets may be multiply connected. To do this, it constructs a set of "slits" in the domain image, which correspond to discontinuities in the range image, using a technique based on generalized Voronoi diagrams. The concept of medial axis is extended to describe inner and outer medial contours of a polygon. Polygonal regions are decomposed into annular subregions, and path homotopies are introduced to describe the annular subregions. These constructions motivate the definition of a ladder, which guides the construction of grid point pairs necessary to effect the warp itself

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Surface representations for 3D face recognition

    Get PDF
    • …
    corecore