4,189 research outputs found

    Dynamic Facial Expression of Emotion Made Easy

    Full text link
    Facial emotion expression for virtual characters is used in a wide variety of areas. Often, the primary reason to use emotion expression is not to study emotion expression generation per se, but to use emotion expression in an application or research project. What is then needed is an easy to use and flexible, but also validated mechanism to do so. In this report we present such a mechanism. It enables developers to build virtual characters with dynamic affective facial expressions. The mechanism is based on Facial Action Coding. It is easy to implement, and code is available for download. To show the validity of the expressions generated with the mechanism we tested the recognition accuracy for 6 basic emotions (joy, anger, sadness, surprise, disgust, fear) and 4 blend emotions (enthusiastic, furious, frustrated, and evil). Additionally we investigated the effect of VC distance (z-coordinate), the effect of the VC's face morphology (male vs. female), the effect of a lateral versus a frontal presentation of the expression, and the effect of intensity of the expression. Participants (n=19, Western and Asian subjects) rated the intensity of each expression for each condition (within subject setup) in a non forced choice manner. All of the basic emotions were uniquely perceived as such. Further, the blends and confusion details of basic emotions are compatible with findings in psychology

    Dynamic Facial Expression Generation on Hilbert Hypersphere with Conditional Wasserstein Generative Adversarial Nets

    Full text link
    In this work, we propose a novel approach for generating videos of the six basic facial expressions given a neutral face image. We propose to exploit the face geometry by modeling the facial landmarks motion as curves encoded as points on a hypersphere. By proposing a conditional version of manifold-valued Wasserstein generative adversarial network (GAN) for motion generation on the hypersphere, we learn the distribution of facial expression dynamics of different classes, from which we synthesize new facial expression motions. The resulting motions can be transformed to sequences of landmarks and then to images sequences by editing the texture information using another conditional Generative Adversarial Network. To the best of our knowledge, this is the first work that explores manifold-valued representations with GAN to address the problem of dynamic facial expression generation. We evaluate our proposed approach both quantitatively and qualitatively on two public datasets; Oulu-CASIA and MUG Facial Expression. Our experimental results demonstrate the effectiveness of our approach in generating realistic videos with continuous motion, realistic appearance and identity preservation. We also show the efficiency of our framework for dynamic facial expressions generation, dynamic facial expression transfer and data augmentation for training improved emotion recognition models

    CNN-based Real-time Dense Face Reconstruction with Inverse-rendered Photo-realistic Face Images

    Full text link
    With the powerfulness of convolution neural networks (CNN), CNN based face reconstruction has recently shown promising performance in reconstructing detailed face shape from 2D face images. The success of CNN-based methods relies on a large number of labeled data. The state-of-the-art synthesizes such data using a coarse morphable face model, which however has difficulty to generate detailed photo-realistic images of faces (with wrinkles). This paper presents a novel face data generation method. Specifically, we render a large number of photo-realistic face images with different attributes based on inverse rendering. Furthermore, we construct a fine-detailed face image dataset by transferring different scales of details from one image to another. We also construct a large number of video-type adjacent frame pairs by simulating the distribution of real video data. With these nicely constructed datasets, we propose a coarse-to-fine learning framework consisting of three convolutional networks. The networks are trained for real-time detailed 3D face reconstruction from monocular video as well as from a single image. Extensive experimental results demonstrate that our framework can produce high-quality reconstruction but with much less computation time compared to the state-of-the-art. Moreover, our method is robust to pose, expression and lighting due to the diversity of data.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence, 201

    The perception of emotion in artificial agents

    Get PDF
    Given recent technological developments in robotics, artificial intelligence and virtual reality, it is perhaps unsurprising that the arrival of emotionally expressive and reactive artificial agents is imminent. However, if such agents are to become integrated into our social milieu, it is imperative to establish an understanding of whether and how humans perceive emotion in artificial agents. In this review, we incorporate recent findings from social robotics, virtual reality, psychology, and neuroscience to examine how people recognize and respond to emotions displayed by artificial agents. First, we review how people perceive emotions expressed by an artificial agent, such as facial and bodily expressions and vocal tone. Second, we evaluate the similarities and differences in the consequences of perceived emotions in artificial compared to human agents. Besides accurately recognizing the emotional state of an artificial agent, it is critical to understand how humans respond to those emotions. Does interacting with an angry robot induce the same responses in people as interacting with an angry person? Similarly, does watching a robot rejoice when it wins a game elicit similar feelings of elation in the human observer? Here we provide an overview of the current state of emotion expression and perception in social robotics, as well as a clear articulation of the challenges and guiding principles to be addressed as we move ever closer to truly emotional artificial agents

    HeadOn: Real-time Reenactment of Human Portrait Videos

    Get PDF
    We propose HeadOn, the first real-time source-to-target reenactment approach for complete human portrait videos that enables transfer of torso and head motion, face expression, and eye gaze. Given a short RGB-D video of the target actor, we automatically construct a personalized geometry proxy that embeds a parametric head, eye, and kinematic torso model. A novel real-time reenactment algorithm employs this proxy to photo-realistically map the captured motion from the source actor to the target actor. On top of the coarse geometric proxy, we propose a video-based rendering technique that composites the modified target portrait video via view- and pose-dependent texturing, and creates photo-realistic imagery of the target actor under novel torso and head poses, facial expressions, and gaze directions. To this end, we propose a robust tracking of the face and torso of the source actor. We extensively evaluate our approach and show significant improvements in enabling much greater flexibility in creating realistic reenacted output videos.Comment: Video: https://www.youtube.com/watch?v=7Dg49wv2c_g Presented at Siggraph'1

    Expressive Modulation of Neutral Visual Speech

    Get PDF
    The need for animated graphical models of the human face is commonplace in the movies, video games and television industries, appearing in everything from low budget advertisements and free mobile apps, to Hollywood blockbusters costing hundreds of millions of dollars. Generative statistical models of animation attempt to address some of the drawbacks of industry standard practices such as labour intensity and creative inflexibility. This work describes one such method for transforming speech animation curves between different expressive styles. Beginning with the assumption that expressive speech animation is a mix of two components, a high-frequency speech component (the content) and a much lower-frequency expressive component (the style), we use Independent Component Analysis (ICA) to identify and manipulate these components independently of one another. Next we learn how the energy for different speaking styles is distributed in terms of the low-dimensional independent components model. Transforming the speaking style involves projecting new animation curves into the lowdimensional ICA space, redistributing the energy in the independent components, and finally reconstructing the animation curves by inverting the projection. We show that a single ICA model can be used for separating multiple expressive styles into their component parts. Subjective evaluations show that viewers can reliably identify the expressive style generated using our approach, and that they have difficulty in identifying transformed animated expressive speech from the equivalent ground-truth

    Artificial Intelligence Tools for Facial Expression Analysis.

    Get PDF
    Inner emotions show visibly upon the human face and are understood as a basic guide to an individual’s inner world. It is, therefore, possible to determine a person’s attitudes and the effects of others’ behaviour on their deeper feelings through examining facial expressions. In real world applications, machines that interact with people need strong facial expression recognition. This recognition is seen to hold advantages for varied applications in affective computing, advanced human-computer interaction, security, stress and depression analysis, robotic systems, and machine learning. This thesis starts by proposing a benchmark of dynamic versus static methods for facial Action Unit (AU) detection. AU activation is a set of local individual facial muscle parts that occur in unison constituting a natural facial expression event. Detecting AUs automatically can provide explicit benefits since it considers both static and dynamic facial features. For this research, AU occurrence activation detection was conducted by extracting features (static and dynamic) of both nominal hand-crafted and deep learning representation from each static image of a video. This confirmed the superior ability of a pretrained model that leaps in performance. Next, temporal modelling was investigated to detect the underlying temporal variation phases using supervised and unsupervised methods from dynamic sequences. During these processes, the importance of stacking dynamic on top of static was discovered in encoding deep features for learning temporal information when combining the spatial and temporal schemes simultaneously. Also, this study found that fusing both temporal and temporal features will give more long term temporal pattern information. Moreover, we hypothesised that using an unsupervised method would enable the leaching of invariant information from dynamic textures. Recently, fresh cutting-edge developments have been created by approaches based on Generative Adversarial Networks (GANs). In the second section of this thesis, we propose a model based on the adoption of an unsupervised DCGAN for the facial features’ extraction and classification to achieve the following: the creation of facial expression images under different arbitrary poses (frontal, multi-view, and in the wild), and the recognition of emotion categories and AUs, in an attempt to resolve the problem of recognising the static seven classes of emotion in the wild. Thorough experimentation with the proposed cross-database performance demonstrates that this approach can improve the generalization results. Additionally, we showed that the features learnt by the DCGAN process are poorly suited to encoding facial expressions when observed under multiple views, or when trained from a limited number of positive examples. Finally, this research focuses on disentangling identity from expression for facial expression recognition. A novel technique was implemented for emotion recognition from a single monocular image. A large-scale dataset (Face vid) was created from facial image videos which were rich in variations and distribution of facial dynamics, appearance, identities, expressions, and 3D poses. This dataset was used to train a DCNN (ResNet) to regress the expression parameters from a 3D Morphable Model jointly with a back-end classifier

    An Actor-Centric Approach to Facial Animation Control by Neural Networks For Non-Player Characters in Video Games

    Get PDF
    Game developers increasingly consider the degree to which character animation emulates facial expressions found in cinema. Employing animators and actors to produce cinematic facial animation by mixing motion capture and hand-crafted animation is labor intensive and therefore expensive. Emotion corpora and neural network controllers have shown promise toward developing autonomous animation that does not rely on motion capture. Previous research and practice in disciplines of Computer Science, Psychology and the Performing Arts have provided frameworks on which to build a workflow toward creating an emotion AI system that can animate the facial mesh of a 3d non-player character deploying a combination of related theories and methods. However, past investigations and their resulting production methods largely ignore the emotion generation systems that have evolved in the performing arts for more than a century. We find very little research that embraces the intellectual process of trained actors as complex collaborators from which to understand and model the training of a neural network for character animation. This investigation demonstrates a workflow design that integrates knowledge from the performing arts and the affective branches of the social and biological sciences. Our workflow begins at the stage of developing and annotating a fictional scenario with actors, to producing a video emotion corpus, to designing training and validating a neural network, to analyzing the emotion data annotation of the corpus and neural network, and finally to determining resemblant behavior of its autonomous animation control of a 3d character facial mesh. The resulting workflow includes a method for the development of a neural network architecture whose initial efficacy as a facial emotion expression simulator has been tested and validated as substantially resemblant to the character behavior developed by a human actor

    A Review of Dynamic Datasets for Facial Expression Research

    Get PDF
    Temporal dynamics have been increasingly recognized as an important component of facial expressions. With the need for appropriate stimuli in research and application, a range of databases of dynamic facial stimuli has been developed. The present article reviews the existing corpora and describes the key dimensions and properties of the available sets. This includes a discussion of conceptual features in terms of thematic issues in dataset construction as well as practical features which are of applied interest to stimulus usage. To identify the most influential sets, we further examine their citation rates and usage frequencies in existing studies. General limitations and implications for emotion research are noted and future directions for stimulus generation are outlined
    • …
    corecore