208 research outputs found

    SCUT-FBP5500: A Diverse Benchmark Dataset for Multi-Paradigm Facial Beauty Prediction

    Full text link
    Facial beauty prediction (FBP) is a significant visual recognition problem to make assessment of facial attractiveness that is consistent to human perception. To tackle this problem, various data-driven models, especially state-of-the-art deep learning techniques, were introduced, and benchmark dataset become one of the essential elements to achieve FBP. Previous works have formulated the recognition of facial beauty as a specific supervised learning problem of classification, regression or ranking, which indicates that FBP is intrinsically a computation problem with multiple paradigms. However, most of FBP benchmark datasets were built under specific computation constrains, which limits the performance and flexibility of the computational model trained on the dataset. In this paper, we argue that FBP is a multi-paradigm computation problem, and propose a new diverse benchmark dataset, called SCUT-FBP5500, to achieve multi-paradigm facial beauty prediction. The SCUT-FBP5500 dataset has totally 5500 frontal faces with diverse properties (male/female, Asian/Caucasian, ages) and diverse labels (face landmarks, beauty scores within [1,~5], beauty score distribution), which allows different computational models with different FBP paradigms, such as appearance-based/shape-based facial beauty classification/regression model for male/female of Asian/Caucasian. We evaluated the SCUT-FBP5500 dataset for FBP using different combinations of feature and predictor, and various deep learning methods. The results indicates the improvement of FBP and the potential applications based on the SCUT-FBP5500.Comment: 6 pages, 14 figures, conference pape

    Facial Beauty Prediction and Analysis based on Deep Convolutional Neural Network: A Review

    Get PDF
    Abstract: Facial attractiveness or facial beauty prediction (FBP) is a current study that has several potential usages. It is a key difficulty area in the computer vision domain because of the few public databases related to FBP and its experimental trials on the minor-scale database. Moreover, the evaluation of facial beauty is personalized in nature, with people having personalized favor of beauty. Deep learning techniques have displayed a significant ability in terms of analysis and feature representation. The previous studies focussed on scattered portions of facial beauty with fewer comparisons between diverse techniques. Thus, this article reviewed the recent research on computer prediction and analysis of face beauty based on deep convolution neural network DCNN. Furthermore, the provided possible lines of research and challenges in this article can help researchers in advancing the state – of- art in future work

    Asian female facial beauty prediction using deep neural networks via transfer learning and multi-channel feature fusion

    Get PDF
    Facial beauty plays an important role in many fields today, such as digital entertainment, facial beautification surgery and etc. However, the facial beauty prediction task has the challenges of insufficient training datasets, low performance of traditional methods, and rarely takes advantage of the feature learning of Convolutional Neural Networks. In this paper, a transfer learning based CNN method that integrates multiple channel features is utilized for Asian female facial beauty prediction tasks. Firstly, a Large-Scale Asian Female Beauty Dataset (LSAFBD) with a more reasonable distribution has been established. Secondly, in order to improve CNN's self-learning ability of facial beauty prediction task, an effective CNN using a novel Softmax-MSE loss function and a double activation layer has been proposed. Then, a data augmentation method and transfer learning strategy were also utilized to mitigate the impact of insufficient data on proposed CNN performance. Finally, a multi-channel feature fusion method was explored to further optimize the proposed CNN model. Experimental results show that the proposed method is superior to traditional learning method combating the Asian female FBP task. Compared with other state-of-the-art CNN models, the proposed CNN model can improve the rank-1 recognition rate from 60.40% to 64.85%, and the pearson correlation coefficient from 0.8594 to 0.8829 on the LSAFBD and obtained 0.9200 regression prediction results on the SCUT dataset

    Multi-View Graph Fusion for Semi-Supervised Learning: Application to Image-Based Face Beauty Prediction

    Get PDF
    Facial Beauty Prediction (FBP) is an important visual recognition problem to evaluate the attractiveness of faces according to human perception. Most existing FBP methods are based on supervised solutions using geometric or deep features. Semi-supervised learning for FBP is an almost unexplored research area. In this work, we propose a graph-based semi-supervised method in which multiple graphs are constructed to find the appropriate graph representation of the face images (with and without scores). The proposed method combines both geometric and deep feature-based graphs to produce a high-level representation of face images instead of using a single face descriptor and also improves the discriminative ability of graph-based score propagation methods. In addition to the data graph, our proposed approach fuses an additional graph adaptively built on the predicted beauty values. Experimental results on the SCUTFBP-5500 facial beauty dataset demonstrate the superiority of the proposed algorithm compared to other state-of-the-art methods

    CNN based facial aesthetics analysis through dynamic robust losses and ensemble regression

    Get PDF
    In recent years, estimating beauty of faces has attracted growing interest in the fields of computer vision and machine learning. This is due to the emergence of face beauty datasets (such as SCUT-FBP, SCUT-FBP5500 and KDEF-PT) and the prevalence of deep learning methods in many tasks. The goal of this work is to leverage the advances in Deep Learning architectures to provide stable and accurate face beauty estimation from static face images. To this end, our proposed approach has three main contributions. To deal with the complicated high-level features associated with the FBP problem by using more than one pre-trained Convolutional Neural Network (CNN) model, we propose an architecture with two backbones (2B-IncRex). In addition to 2B-IncRex, we introduce a parabolic dynamic law to control the behavior of the robust loss parameters during training. These robust losses are ParamSmoothL1, Huber, and Tukey. As a third contribution, we propose an ensemble regression based on five regressors, namely Resnext-50, Inception-v3 and three regressors based on our proposed 2B-IncRex architecture. These models are trained with the following dynamic loss functions: Dynamic ParamSmoothL1, Dynamic Tukey, Dynamic ParamSmoothL1, Dynamic Huber, and Dynamic Tukey, respectively. To evaluate the performance of our approach, we used two datasets: SCUT-FBP5500 and KDEF-PT. The dataset SCUT-FBP5500 contains two evaluation scenarios provided by the database developers: 60-40% split and five- fold cross-validation. Our approach outperforms state-of-the-art methods on several metrics in both evaluation scenarios of SCUT-FBP5500. Moreover, experiments on the KDEF-PT dataset demonstrate the efficiency of our approach for estimating facial beauty using transfer learning, despite the presence of facial expressions and limited data. These comparisons highlight the effectiveness of the proposed solutions for FBP. They also show that the proposed Dynamic robust losses lead to more flexible and accurate estimators.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature
    corecore