540 research outputs found

    A Comprehensive Performance Evaluation of Deformable Face Tracking "In-the-Wild"

    Full text link
    Recently, technologies such as face detection, facial landmark localisation and face recognition and verification have matured enough to provide effective and efficient solutions for imagery captured under arbitrary conditions (referred to as "in-the-wild"). This is partially attributed to the fact that comprehensive "in-the-wild" benchmarks have been developed for face detection, landmark localisation and recognition/verification. A very important technology that has not been thoroughly evaluated yet is deformable face tracking "in-the-wild". Until now, the performance has mainly been assessed qualitatively by visually assessing the result of a deformable face tracking technology on short videos. In this paper, we perform the first, to the best of our knowledge, thorough evaluation of state-of-the-art deformable face tracking pipelines using the recently introduced 300VW benchmark. We evaluate many different architectures focusing mainly on the task of on-line deformable face tracking. In particular, we compare the following general strategies: (a) generic face detection plus generic facial landmark localisation, (b) generic model free tracking plus generic facial landmark localisation, as well as (c) hybrid approaches using state-of-the-art face detection, model free tracking and facial landmark localisation technologies. Our evaluation reveals future avenues for further research on the topic.Comment: E. Antonakos and P. Snape contributed equally and have joint second authorshi

    Simultaneous Facial Landmark Detection, Pose and Deformation Estimation under Facial Occlusion

    Full text link
    Facial landmark detection, head pose estimation, and facial deformation analysis are typical facial behavior analysis tasks in computer vision. The existing methods usually perform each task independently and sequentially, ignoring their interactions. To tackle this problem, we propose a unified framework for simultaneous facial landmark detection, head pose estimation, and facial deformation analysis, and the proposed model is robust to facial occlusion. Following a cascade procedure augmented with model-based head pose estimation, we iteratively update the facial landmark locations, facial occlusion, head pose and facial de- formation until convergence. The experimental results on benchmark databases demonstrate the effectiveness of the proposed method for simultaneous facial landmark detection, head pose and facial deformation estimation, even if the images are under facial occlusion.Comment: International Conference on Computer Vision and Pattern Recognition, 201

    3D face tracking and multi-scale, spatio-temporal analysis of linguistically significant facial expressions and head positions in ASL

    Full text link
    Essential grammatical information is conveyed in signed languages by clusters of events involving facial expressions and movements of the head and upper body. This poses a significant challenge for computer-based sign language recognition. Here, we present new methods for the recognition of nonmanual grammatical markers in American Sign Language (ASL) based on: (1) new 3D tracking methods for the estimation of 3D head pose and facial expressions to determine the relevant low-level features; (2) methods for higher-level analysis of component events (raised/lowered eyebrows, periodic head nods and head shakes) used in grammatical markings—with differentiation of temporal phases (onset, core, offset, where appropriate), analysis of their characteristic properties, and extraction of corresponding features; (3) a 2-level learning framework to combine lowand high-level features of differing spatio-temporal scales. This new approach achieves significantly better tracking and recognition results than our previous methods

    PD2T: Person-specific Detection, Deformable Tracking

    Get PDF
    Face detection/alignment has reached a satisfactory state in static images captured under arbitrary conditions. Such methods typically perform (joint) fitting independently for each frame and are used in commercial applications; however in the majority of the real-world scenarios the dynamic scenes are of interest. Hence, we argue that generic fitting per frame is suboptimal (it discards the informative correlation of sequential frames) and propose to learn person-specific statistics from the video to improve the generic results. To that end, we introduce a meticulously studied pipeline, which we name PD\textsuperscript{2}T, that performs person-specific detection and landmark localisation. We carry out extensive experimentation with a diverse set of i) generic fitting results, ii) different objects (human faces, animal faces) that illustrate the powerful properties of our proposed pipeline and experimentally verify that PD\textsuperscript{2}T outperforms all the compared methods

    The first Facial Landmark Tracking in-the-Wild Challenge: benchmark and results

    Get PDF
    Detection and tracking of faces in image sequences is among the most well studied problems in the intersection of statistical machine learning and computer vision. Often, tracking and detection methodologies use a rigid representation to describe the facial region 1, hence they can neither capture nor exploit the non-rigid facial deformations, which are crucial for countless of applications (e.g., facial expression analysis, facial motion capture, high-performance face recognition etc.). Usually, the non-rigid deformations are captured by locating and tracking the position of a set of fiducial facial landmarks (e.g., eyes, nose, mouth etc.). Recently, we witnessed a burst of research in automatic facial landmark localisation in static imagery. This is partly attributed to the availability of large amount of annotated data, many of which have been provided by the first facial landmark localisation challenge (also known as 300-W challenge). Even though now well established benchmarks exist for facial landmark localisation in static imagery, to the best of our knowledge, there is no established benchmark for assessing the performance of facial landmark tracking methodologies, containing an adequate number of annotated face videos. In conjunction with ICCV’2015 we run the first competition/challenge on facial landmark tracking in long-term videos. In this paper, we present the first benchmark for long-term facial landmark tracking, containing currently over 110 annotated videos, and we summarise the results of the competition
    • …
    corecore