2,499 research outputs found

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160

    Effect of imperfections on and modelling of conductivity and hardness of high-Zn X7xxx cast al-alloys produced from recycled beverage can

    Get PDF
    In this paper, the effect of imperfections as a result of formation of new phases on electrical and macro hardness property of a novel experimental high-Zn Al-Zn-Mg-Cu alloys produced from recycled beverage can was investigated with the aim of correlating hardness with conductivity using ANOVA. Alloys were observed in the As Cast (AC), annealed (O), natural aged (T4) and artificial aged (T6) conditions. Heat treatments supported the formation of hardening precipitates like the Al2.06Fe4, α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), β-AlFeSi and MgZn2 phases. Imperfections inform of voids and contaminants are by-products of recycled aluminium and casting route. Peak obtainable hardness of 122.94 HV in the T6 condition was observed in an alloy of Al-5.0 Zn-1.5 Mg- 0.35 Cu. The same alloy’s conductivity is 3.676 107 S/m. The least hardness of 38.16 HV and conductivity of 3.533 107 S/m is credited to an alloy of Al- 5.0 Zn-1.00 Mg-0.35 Cu in the O condition. The relationship between hardness and conductivity is nonlinear. Models developed to predict the hardness of this experimental alloys fits all the variables and covers the AC, O, T4 and T6 respectively. The need for further investigation on the imperfections, optimization of mechanical properties and additional mechanical properties investigation is required

    Design of power device sizing and integration for solar-powered aircraft application

    Get PDF
    The power device constitutes the PV cell, rechargeable battery, and maximum power point tracker. Solar aircraft lack proper power device sizing to provide adequate energy to sustain low and high altitude and long endurance flight. This paper conducts the power device sizing and integration for solar-powered aircraft applications (Unmanned Aerial Vehicle). The solar radiation model, the aerodynamic model, the energy and mass balance model, and the adopted aircraft configuration were used to determine the power device sizing, integration, and application. The input variables were aircraft mass 3 kg, wingspan 3.2 m, chord 0.3 m, aspect ratio 11.25, solar radiation 825 W/m2 , lift coefficient 0.913, total drag coefficient 0.047, day time 12 hour, night time 12 hours, respectively. The input variables were incorporated into the MS Excel program to determine the output variables. The output variables are; the power required 10.92 W, the total electrical power 19.47 W, the total electrical energy 465.5 Wh, the daily solar energy 578.33 Wh, the solar cell area 0.62 m, the number of PV cell 32, and the number of the Rechargeable battery 74 respectively. The power device was developed with the PV cell Maxeon Gen III for high efficiency, the rechargeable battery sulfur-lithium battery for high energy density, and the Maximum power point tracker neural network algorithm for smart and efficient response. The PD sizing was validated with three existing designs. The validation results show that 20% reduction of the required number of PV cells and RB and a 30% increase in flight durations

    Automatic method for detection of characteristic areas in thermal face images

    Get PDF
    The use of thermal images of a selected area of the head in screening systems, which perform fast and accurate analysis of the temperature distribution of individual areas, requires the use of profiled image analysis methods. There exist methods for automated face analysis which are used at airports or train stations and are designed to detect people with fever. However, they do not enable automatic separation of specific areas of the face. This paper presents an algorithm for image analysis which enables localization of characteristic areas of the face in thermograms. The algorithm is resistant to subjects’ variability and also to changes in the position and orientation of the head. In addition, an attempt was made to eliminate the impact of background and interference caused by hair and hairline. The algorithm automatically adjusts its operation parameters to suit the prevailing room conditions. Compared to previous studies (Marzec et al., J Med Inform Tech 16:151–159, 2010), the set of thermal images was expanded by 34 images. As a result, the research material was a total of 125 patients’ thermograms performed in the Department of Pediatrics and Child and Adolescent Neurology in Katowice, Poland. The images were taken interchangeably with several thermal cameras: AGEMA 590 PAL (sensitivity of 0.1 °C), ThermaCam S65 (sensitivity of 0.08 °C), A310 (sensitivity of 0.05 °C), T335 (sensitivity of 0.05 °C) with a 320×240 pixel optical resolution of detectors, maintaining the principles related to taking thermal images for medical thermography. In comparison to (Marzec et al., J Med Inform Tech 16:151–159, 2010), the approach presented there has been extended and modified. Based on the comparison with other methods presented in the literature, it was demonstrated that this method is more complex as it enables to determine the approximate areas of selected parts of the face including anthropometry. As a result of this comparison, better results were obtained in terms of localization accuracy of the center of the eye sockets and nostrils, giving an accuracy of 87 % for the eyes and 93 % for the nostrils

    Face recognition using infrared vision

    Get PDF
    Au cours de la dernière décennie, la reconnaissance de visage basée sur l’imagerie infrarouge (IR) et en particulier la thermographie IR est devenue une alternative prometteuse aux approches conventionnelles utilisant l’imagerie dans le spectre visible. En effet l’imagerie (visible et infrarouge) trouvent encore des contraintes à leur application efficace dans le monde réel. Bien qu’insensibles à toute variation d’illumination dans le spectre visible, les images IR sont caractérisées par des défis spécifiques qui leur sont propres, notamment la sensibilité aux facteurs qui affectent le rayonnement thermique du visage tels que l’état émotionnel, la température ambiante, la consommation d’alcool, etc. En outre, il est plus laborieux de corriger l’expression du visage et les changements de poses dans les images IR puisque leur contenu est moins riche aux hautes fréquences spatiales ce qui représente en fait une indication importante pour le calage de tout modèle déformable. Dans cette thèse, nous décrivons une nouvelle méthode qui répond à ces défis majeurs. Concrètement, pour remédier aux changements dans les poses et expressions du visage, nous générons une image synthétique frontale du visage qui est canonique et neutre vis-à-vis de toute expression faciale à partir d’une image du visage de pose et expression faciale arbitraires. Ceci est réalisé par l’application d’une déformation affine par morceaux précédée par un calage via un modèle d’apparence active (AAM). Ainsi, une de nos publications est la première publication qui explore l’utilisation d’un AAM sur les images IR thermiques ; nous y proposons une étape de prétraitement qui rehausse la netteté des images thermiques, ce qui rend la convergence de l’AAM rapide et plus précise. Pour surmonter le problème des images IR thermiques par rapport au motif exact du rayonnement thermique du visage, nous le décrivons celui-ci par une représentation s’appuyant sur des caractéristiques anatomiques fiables. Contrairement aux approches existantes, notre représentation n’est pas binaire ; elle met plutôt l’accent sur la fiabilité des caractéristiques extraites. Cela rend la représentation proposée beaucoup plus robuste à la fois à la pose et aux changements possibles de température. L’efficacité de l’approche proposée est démontrée sur la plus grande base de données publique des vidéos IR thermiques des visages. Sur cette base d’images, notre méthode atteint des performances de reconnaissance assez bonnes et surpasse de manière significative les méthodes décrites précédemment dans la littérature. L’approche proposée a également montré de très bonnes performances sur des sous-ensembles de cette base de données que nous avons montée nous-mêmes au sein de notre laboratoire. A notre connaissance, il s’agit de l’une des bases de données les plus importantes disponibles à l’heure actuelle tout en présentant certains défis.Over the course of the last decade, infrared (IR) and particularly thermal IR imaging based face recognition has emerged as a promising complement to conventional, visible spectrum based approaches which continue to struggle when applied in the real world. While inherently insensitive to visible spectrum illumination changes, IR images introduce specific challenges of their own, most notably sensitivity to factors which affect facial heat emission patterns, e.g., emotional state, ambient temperature, etc. In addition, facial expression and pose changes are more difficult to correct in IR images because they are less rich in high frequency details which is an important cue for fitting any deformable model. In this thesis we describe a novel method which addresses these major challenges. Specifically, to normalize for pose and facial expression changes we generate a synthetic frontal image of a face in a canonical, neutral facial expression from an image of the face in an arbitrary pose and facial expression. This is achieved by piecewise affine warping which follows active appearance model (AAM) fitting. This is the first work which explores the use of an AAM on thermal IR images; we propose a pre-processing step which enhances details in thermal images, making AAM convergence faster and more accurate. To overcome the problem of thermal IR image sensitivity to the exact pattern of facial temperature emissions we describe a representation based on reliable anatomical features. In contrast to previous approaches, our representation is not binary; rather, our method accounts for the reliability of the extracted features. This makes the proposed representation much more robust both to pose and scale changes. The effectiveness of the proposed approach is demonstrated on the largest public database of thermal IR images of faces on which it achieves satisfying recognition performance and significantly outperforms previously described methods. The proposed approach has also demonstrated satisfying performance on subsets of the largest video database of the world gathered in our laboratory which will be publicly available free of charge in future. The reader should note that due to the very nature of the feature extraction method in our system (i.e., anatomical based nature of it), we anticipate high robustness of our system to some challenging factors such as the temperature changes. However, we were not able to investigate this in depth due to the limits which exist in gathering realistic databases. Gathering the largest video database considering some challenging factors is one of the other contributions of this research

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study
    • …
    corecore